1606.06355v1 [cs.Al] 20 Jun 2016

arxXiv

A Hierarchical Reinforcement Learning Method for Persistent
Time-Sensitive Tasks

Xiao Li and Calin Belta

Abstract— Reinforcement learning has been applied to many
interesting problems such as the famous TD-gammon [1] and
the inverted helicopter flight [2]. However little effort has been
put into developing methods to learn policies for complex
persistent tasks and tasks that are time-sensitive. In this paper
we take a step towards solving this problem by using signal
temporal logic (STL) as task specification, and taking advantage
of the temporal abstraction feature that the options framework
provide. We show via simulation that a relatively easy to
implement algorithm that combines STL and options can learn
a satisfactory policy with a small number of training cases.

I. INTRODUCTION

Reinforcement learning is the problem of learning from
interaction with the environment to achieve a goal [3].
Usually the interaction model is unknown to the learning
agent and an optimal policy is to be learned with sequences
of interaction experiences and a reward that indicates the
“correctness” of taking an action hence the reinforcement.
There has been a number of successful attempts to apply
reinforcement learning to the field of control. One of the
most widely known efforts is learning of a flight controller
for aggressive aerobatic maneuvers on a RC helicopter [2].
In addition, a PR2 (Personal Robot 2) has learned to perform
a number of household chores such at placing a coat hanger,
twisting open bottle caps, etc using ideas from reinforcement
learning [4]. More recent efforts in this area has led a
learning agent to play many of the classic Atari 2600 games
at the professional human level [5], and the the possibility of
a match at the game of Go between AlphaGo (an Al agent
created by Google Deepmind [6]) and one of the top Go
players in the world Lee Sedol.

Reinforcement learning has great potential in areas where
precise modeling of system and environmental dynamics are
difficult but interaction data is available, which is the case
for many real world applications. In classical reinforcement
learning, the reward structure needs to be carefully designed
to obtain a desirable outcome, and often additional tech-
niques such as reward shaping [7],[8] need to be applied
to improve the learning efficiency. Moreover, the tasks being
learned are often single goal episodic tasks such as reaching
a destination in shortest time [9], paddling a ball [10]
or winning a game that has a set of well defined rules
[S51.[1]. Little effort has been put into creating a learning

X. Li is with the Department of Mechanical Engineering. C. Belta
is with the Division of Systems Engineering and the Department of
Mechanical Engineering at Boston University, Boston, MA -2215. Email:
{x1i87 cbelta} @bu.edu

This work is partially supported by the ONR under grant N00014-14-1-
0554 and by the NSF under grant NRI-1426907, CMMI-1400167

agent for complex time-sensitive multi-goal persistent tasks.
Persistence requires that the task is continuous/cyclic and
does not have a notion of termination (or absorbing state),
whereas multi-goal time-sensitiveness indicates that the task
consists of subtasks and it is desirable to switch among them
in a predefined timely fashion. An example of such a task
is controlling of a robotic manipulator on an assembly line.
Here the manipulator may switch from fastening a screw at
one location to wielding at another location, and the time
between the switch may need to be controlled depending on
how the position and orientation of the part are handled by
possibly the conveyer belt or other manipulators.

Learning of simple persistent tasks has traditionally been
tackled using average reward reinforcement learning [11].
Well known algorithms include R-learning [12] and H-
learning [13]. However these methods work well with only
unichain MDPs where every deterministic and stationary
policy on that MDP contains only a single loop, also
called a recurrent class of states [14]. This is obviously not
enough for any task of reasonable complexity. [15],[16] uses
model-based approaches to learn policies that maximize the
probability of satisfying a given linear temporal logic (LTL)
formula. However, using probability of satisfaction to guide
learning can be of low efficiency because no “partial credit”
is given to the agent for being “close” to satisfying the
specification. And thus the agent performs random search
before it “accidentally” satisfies the LTL specification for the
first time. Moreover, LTL has time-abstract semantics that
prevent users from specifying time bounds quantitatively.

In this paper we turned to signal temporal logic (STL), a
rich predicate logic that can describe tasks involving bounds
on physical states, continuous time windows and logical
relationships. For example the assembly line manipulator
control task described earlier can be easily expressed using
STL in the form “from start of the assembly task until
the end, with a period of At repeatedly position the end-
effector to within a tolerance of the screw location and
perform fastening motion, and then position the end-effector
to within a tolerance of the wielding point and perform the
wielding task” (the STL formula is presented in the next
section). The one significant convenience that STL brings
is its equipment with a continuous measure of satisfiability
called the robustness degree, which translates naturally to
a continuous reward structure that can be used in the rein-
forcement learning framework. Therefore with STL the user
only has to “spell out” the task requirements in a compact
yet powerful language and the rest will be taken care of (no
need to struggle with designing a good reward structure).

The challenge of using STL is that evaluation of the
robustness degree requires a state trajectory, therefore either
some kind of memory needs to be incorporated into the
learning agent or the state/action space be expanded to
incorporate trajectories that the agent can choose from. Here
we adopt the options framework [17] which abstracts each
subtask as an MDP with a policy of its own, and a higher
level policy is present to choose among the subtask policies
at appropriate times. In this paper we present an algorithm
that given an STL task specification, automatically generates
a set of subtasks, and by interacting with the environment
simultaneously learn the subtasks’ policies and the higher
level policy that will lead the agent to satisfy the given
specification.

Section [l introduces the Q-learning algorithm that sub-
sequent contents are developed on, as well as the options
framework and STL. Section describes in detail the
proposed algorithm. Section provides simulation results
to verify the proposed approach and some discussions about
the advantages and shortcomings of the algorithm. Section [V]
concludes with final remarks and directions for future work.

II. BACKGROUND

Reinforcement learning bears the curse of dimensionality.
Especially for discretized representations of state and action
spaces (used in many classical tabular methods [3]), the
number of parameters (state value, action value, etc) increase
exponentially with the size of the state/action space. One
attempt to alleviate such computational burden is to exploit
temporal and state abstractions and the possibility of learning
on a reduced set of abstractions as oppose to the primitive
state and actions. Ideas along this line are called hierarchical
reinforcement learning (HRL) in the literature, and a survey
of advances in this area as well as the main approaches
used are provided in [18]. We base our work on the options
framework developed in [17] for its ability to deal with
temporally extended actions, which is an extremely helpful
factor in the development of an algorithm that learns a policy
that satisfies the complicated task specification given by an
STL formula.

A. Reinforcement Learning Framework and Q-Learning

Here we briefly describe the reinforcement learning frame-
work for discrete-time finite Markov decision processes
(MDP).

Definition 1: An MDP is a tuple (S, A, T(-,-,-), R(-,-,"))
where

e S is a finite set of states;

o A is a finite set of actions;

o T:5%xAxS —[0,1] is the transition probability with

T'(s,a,s’) being the probability of taking action a € A
at state s € S and end up in state s’ € S;
e R: SxAxS — IR is the reward function with
R(s,a,s’) being the reward obtained by taking action
a in s and end in s'.
In reinforcement learning, the transition model T'(s,a, s)
and the reward structure R(s,a,s’) are unknown to the

learning agent (but an immediate reward r is given to the
agent after each action), instead the agent has to interact
with the environment and figure out the optimal sequence of
actions to take in order to maximize the obtained reward. We
have based our method on one of the most popular model-
free off-policy reinforcement learning algorithms called Q-
learning [19]. In short, Q-learning aims at finding a policy
m: S — A that maximizes the expected sum of discounted
reward given by

o0
V(s) = E[Z ~¥ori). (1)
i=0
Here v € [0,1] is a constant discount factor and is decayed
with time (hence the exponent ¢) to put higher value on more
recent rewards. r; is the one step immediate reward at step
i. Equation (I)) can be written recursively as

V(s) = Z T(s,a,s)(r+~V(s)), ()

s'eS

which becomes the well known Bellman’s Equation. Algo-
rithms exist that learns the optimal value function V' (s) from
experience. The most famous one is perhaps the temporal
difference learning algorithm (also called TD-learning [20]).
After V(s) converges to its optimal value V*(s), we have
the recursive relationship

V*(s) = max T(s,a,8)(r +yV*(s")). (3)
s'es

And the optimal policy is calculated from

7 (s) = arg maxV*(s). 4)
acA
However without knowing the transition model T'(s, a,), it
is difficult to extract the optimal policy from V*(s). This is
where Q-learning comes in. Define an action-value function
that assigns a value to each state-action pair (also known as
the Q function) as follows

Q(s,a) =Y T(s,a,8)(r+V(s)). 5)
Then following Equation (3)) we have
V*(s) = maxQ*(s, a). (6)

Now we can write the optimal Q-function in a recursive form
by

Q*(5,0) = 3 Tls,0,8)(r +maxQ*(s,). (7

s'eS

And Q*(s,a) can be approximated by calculating a running
average of the Q-values obtained from experience.

Assume at time ¢ the agent takes action a, transitions from
state s to s’, and obtains a one step immediate reward r

(experiences usually take form of a tuple (s,a,s’,r)). The
Q-function is then update following

Q(Sv a) — Q(S’ a) + O‘t(r + '}/g}gﬁQ(Slv CL/) - Q(S’ CL)), (8)
where « € [0, 1] is the learning rate. It is proven in [21] that
if the choice of « satisfies Y _,” a; = oo and Y ;° af < 00
while every state and action are visited infinitely often, then
Q(s,a) converges (denoted by Q*(s,a)). In practice it is
usually sufficient to use a constant o and thus the subscript
t is dropped in later formulations. After convergence, the
optimal policy can be calculated by

7 (s) = argmax@Q* (s, a).)
acA
Since action a is an explicit variable of the Q-function,
Equation (I3)) can be easy evaluated.

B. Option-Based Hierarchical Reinforcement Learning

The options framework deals explicitly with temporally
extended actions. An option is defined by a tuple (I, 3)
where I C S is the initiation set denoting the states where
an option is available. 7 : S — A is the option’s policy (also
called a flat policy) and 3 : S — [0, 1] is the termination map
defining the probability of termination of an option at each
state. Suppose at time ¢ the agent resides at state s. Instead
of choosing an action a € A, the agent chooses an option
0= (I,, o, Bo) € O, where O is the set of options (note that
option o needs to be available at state s i.e. s € [,). After
selecting the option, the agent follows the option’s flat policy
7o(s) until termination is invoked. If the termination state is
', then S(s’) > 0. Analogous to Q-learning, the experience
that the agent obtained now becomes a tuple (s,o,s’,7,),
where 7, is a lumped reward from executing option o to
termination. Assuming that option o is being executed for k
time steps, now instead of updating an action-value function
Q(s,a), an option-value function is updated using

Q(s,0) + Q(s,o)-i—a(ro—&-’ykgrllggQ(s’,0’)—Q(s,o)). (10)

This update is applied each time an option is executed to
termination. Equation (I0) is very similar to Equation (8)
except for the exponent k£ on the discount factor . This is
to signify that the option is executed for a temporally extend
period of time and future rewards should be discounted
accordingly. It is worth mentioning that a primitive action
can be considered a one step option o, = (I, 74, 5,) Where
I, =8, m(s) =aand B,(s) = 1,Vs € S, therefore if o, is
executed at all times then Equation (I0) becomes Equation
(8). The optimal options policy p : S — O is obtained by

w*(s) = arg maxQ* (s, 0). (11)

0€O
The flat policy 7,(s) for each option in O can be provided by
the user or be learned simultaneously with the options policy
(). Details on simultaneous learning will be discussed in

the next section. We refer readers to [17] for a detailed
formulation of the options framework.

C. Signal Temporal Logic (STL)

Signal temporal logic is a framework used to describe an
expressive collection of specifications in a compact form. It
was originally developed to monitor continuous-time signals,
but can be extended to describe desired state constraints
in a control system. Here we briefly present the necessary
definitions of STL and refer interested readers to [22], [23],
[24] for further details. Informally, STL formulas consist of
boolean connectives —(negation/not), A(conjunction/and), V
(disjunction/or), as well as bounded-time temporal operators
Ult, 1) (until between t; and t2), {p, 4,) (eventually be-
tween ¢1 and ¢2) and O, ;) (always between ?1 and i2)
that operate on a finite set of predicates over the underlying
states. As a quick example, consider a robot traveling in a
plane with its position (z,y) as states. The trajectory of the
robot is specified by a simple STL formula

(ZS 0 4)1/}a

Y = O gz > 10) A (z < 14) A

(y < 10)].
(12)

(y > 6) A

The formula in Equation (I2)) reads “always in O to 4 time
steps, X is to be greater than 10 and smaller than 12, and
y greater than 6 and smaller than 8”, which specifies that
the robot should stay in a square region given by bound
(Tmae = 14, Tmin = 10, Ymaz = 10, Ymin = 6) from 0 to 4
time steps.

In this paper, we constrain STL to be defined over se-
quences of discrete valued states produced by the MDP in
Definition (I). We denote s; to be the state at time ¢, and
St:t4k to be a time series of the state trajectory from ¢ to t+k,
i.e. Sg.e+k = [St, St+1,- - -, Strk)- The usefulness of STL lies
in its equipment with a set of quantitative measure of how
well a given formula is satisfied, which is called robustness
degree (robustness for short). In the above example, a term
like x > 10 is called a predicate which we denote by p.
Let p take the form of a general inequality f(s) < ¢, where
f(s) is a function of the states and c is a constant (such as
flz,y) = x+2y < 7). If a state trajectory s;.¢1, is provided,
the robustness of an STL formula is defined recursively by

T'Stvf()<C)7cff(5t)v
8¢, @) = —1(s1,),
8t, 1 A ¢2) = min(r(st, ¢1),

(
(
(st
(51,01 V ¢2) = max(r(ss, ¢1),
(
(
(

<

r

r(st, ¢2)),
T(sta ¢2))7

<

T(St:it+k, I:\[t t+k]¢) t’eI[ItlitIik)(r(St/’gb))’ (13)
T(S¢: t+ka [t t+k]¢) = & r[(zat‘ik)(r((gt,’ ¢))a

T(Stt1k> P1Ut 141y P2) =

max

min | r(sy, , min (s, _
t’E[t,t+k)< ((t (bl) t”e[t,t/) (t ¢2)>)

TABLE I: Simple STL Example

I3 0 I 2 3
st = (z,yt) | 9,7 | (10,7) | (A1,7) | (11,8)
r(st,) -1 0 1 1

r(s0:4, P) -1

Note that in general if formula ¢ contains temporal operators
(0,,U), a state trajectory Sg.i4k iS required to evaluate
robustness, but if ¢ contains only boolean connected predi-
cates, the robustness is then evaluated with respective to one
particular state s;. Using the above definition of robustness, a
larger positive value means stronger satisfaction and a larger
negative value means stronger violation of the STL formula.

Table [I| shows an example of how to calculate the robust-
ness of a trajectory given STL formula in Equation (I2).
We can see that for this trajectory the overall robustness is
negative meaning that Equation (I2) is violated. The reason
is that the first point in the trajectory lies outside the desired
square given by v and the STL formula dictates that all
positions should stay inside the square within the timeframe
of 0 to 4 . If instead of O 4y7) we specify {[o4)?, then
r(S0.4,¢) = 1 because ¢ (eventually) looks at the highest
satisfying point whereas O(always) looks at the highest
violation point. The point of maximum satisfaction occurs
at the center of the square (s = (12,8)) with a robustness
value of 2.

Even though the example above uses the simplest form
of STL formula for explanation, an STL specification can
be much richer. For the assembly line manipulator task
mentioned in the Introduction, let p.. be the position of
the end-effector, pscreww be the position of the screw to be
fastened, and p,;c1q be the wielding point. Then the assembly
task can be expressed by the STL formula

Gassembly = Ujo,00) [O[O,At)(‘pee — Pserew| < Nserew)N

Q[U,At)(‘pee - pwield‘ < nwield)}-
(14)

In the above formula | - | is the Euclidean distance. 7screw
and 714 are the position thresholds for the screw fastening
and wielding tasks respectively.

III. REINFORCEMENT LEARNING FOR STL
SPECIFIED GOALS

The options framework provides a way to expand the
action space to a set of options. Executing options generate
repeatable trajectories that can be used to evaluate STL
robustness. In this section we present an algorithm that,
given an STL formula that describes the desired behavior
of the system, automatically generates a set of options.
The algorithm then learns a hierarchically optimal options
policy and all options’ flat policies by interacting with the
environment (more on hierarchical optimality in the next
section).

A. Problem Formulation

Given an options policy p : S — O, let V¥#(s) be
the expected sum of discounted lumped reward of state s
obtained from following 1, which can be written recursively
as

VH(s) = Elro + e V*(s)]. (15)

In the above equation, the subscripts o denote the option be-
ing executed i.e. o = p(s) at each state s. r, = r(St.t4k,, P)
is the lumped reward obtained from executing option o at
time t and state s, and terminating at time ¢ + k, and
state s’ (refer to Equation for notation and robustness
calculation). Here we denote k, to be the number of time
steps option o takes to terminate. The problem that we
address in this paper can then be formulated as:

Problem 1: Given an MDP M = (S, A,T,R) with
unknown transition model T'(s,a,s’) and reward structure
R(s,a,s’), an STL formula ¢ over S, and a set of options
O, find a policy ¢ : S — O that maximizes the expected
sum of discounted lumped reward as specified in Equation

(L3).

Before the algorithm is presented, we introduce some
terminology. First a primitive option is an option whose
policy is a flat policy (i.e 7, : S — A). This is in contrast
with a hierarchical option whose policy maps states to lower
level options (7, : S — O). In other words a hierarchical
option is an option over option and thus higher up the
hierarchy. We will not be using hierarchical options in this
paper. A temporally combined option is an option constructed
from executing a selected set of options in a predefined
order. For example, suppose we have two primitive options
op1 = (Ip1,Tp1, Bp1) and opa = (Ipa, Tp2, Bp2), a temporally
combined option 0,12 = (Ip1-2, Tp1—2, Bp1—2) can be exe-
cuted by first following option 0, until termination and then
follow option 0y until termination. Therefore the initiation
set Ip1—2 = I,1 and the termination map Sp1—2 = [p2. Also
it should be ensured that the states where termination of
option 0y is possible should be an element of the initiation
set of oy ie. {s : Bpi(s) > 0} C I,a. A temporally
combined option can be a primitive option or a hierarchical
option depending on its constituent options. For the method
presented in this paper, all options are primitive options
hence the subscript p is dropped.

B. The Hierarchical STL Learning Algorithm (HSTL-
Learning)

Given a STL specification containing n boolean con-
nected predicates ¢y to v, (like the ¢ in Equation),
for each ¢; € {41,...,9,}, construct a primitive option
0; = (I;,m;, B;) (I; and f3; are user defined). Using these
primitive options, a set of temporally combined options O is
constructed. The way in which O is constructed can be con-
trolled by the user. For example if the primitive options set is
O, = {01, 02,03} , a possible temporally combined options
set can be O = {017 09,03,01-2,01-3,02_3, 01_2_3}.

Here we take advantage of the fact that Q-learning is an off-
policy learning algorithm, meaning that the learned policy is
independent of the exploration scheme [25]. Hence multiple
policies can be learned simultaneously while the agent is
interacting with the environment. In the case of this example,
n + 1 policies need to be learned where n is the number of
boolean connected predicates in the STL specification (hence
the number of flat policies) and one more for the options
policy i : S — Op. The complete learning algorithm is
present in Algorithm [I]

Algorithm 1 HSTL-Learning

1: procedure HSTL-UPDATE(¢, o, T'raj, Act)

2: For each of the n primitive options, initialized action-
value function Q(s,a) < Qo(s,a), initiation set I and
termination map [

3: Construct the temporally combined options set O

4: Initialize the option-value function Q;(s,0) <
Qo(s,0) for o € O

5: Choose learning rates o and discount factors vy for
all learning agents

6: sp < Traj[:, k] > this is the

state where o is terminated. colon indicates all elements
in the dimension
fori=1tok—1 do
s; < Trajl:, 1]

: a; < Act[:, 1]
10: Siy1 < Trajl:,i +1]
11: for) =1tondo > update all primitive
options’ Q-functions
12: rj < 7(Si41,%;) > robustness as the reward

for flat policy learning, refer to Equation

13: Qj(si,ai) <+ Qj(sia) + aj(r; +
7Y; Mmax Qj(8i+1,ai+1) - Qj(si»ai))
a;j+1€A
14: end for
15: Trajseg = Trajl:,i: k| > ¢ : k indicates
element ¢ to k
16: To, = 1(TTafseqg, @)
17: Q(si,o) — Q(Sza 0) + 010(7"011 +
¥ max Q(sy, or) — Q(s4,0))
o €07
18: end for

return all Q;(s,a) for j € 1,...,n and Q(s,0)
19: end procedure

The inputs to Algorithm [T]are an STL specification ¢, the
currently selected option o € O, and the trajectory resulted
from executing o to termination Traj. Here Traj isa mx k
matrix where m is the dimension of state space and k is the
number of time steps o is executed before termination. Act
is a ¢ x k matrix where ¢ is the dimension of primitive
action space. The algorithm outputs the updated n + 1 Q-
functions. The main idea of Algorithm[T]is that every time an
option is executed to termination, the resulting trajectory is
used to calculate a reward based on evaluating its robustness
against the given STL formula (line 19). This reward is used
to update the Q-function Q(s, 0). In cases where the time of

executing an option to termination is less than that required
to evaluate the robustness of the given STL formula, the
upper time bound of the STL formula is adjusted to coincide
with the execution time of the option, and evaluation is
proceeded as usual. This is to ensure that choices of options
are Markovian and does not depend on previous history. In
addition, every primitive step (s, a, s’) within the trajectory
is used to update the Q-function Q(s,a) for all options’
flat policies, with the reward being the robustness of the
resulting state s’ with respective to the corresponding 1)
(line 15). Because Q)(s,0) is updated once only when an
option terminates, convergence to a desirable policy can be
quite slow. To speed up the learning process, an intra-option
update step is introduced which follows from the idea of
intra-option value learning presented in [17]. If an option is
initiated at state s; and terminated at sy with trajectory
St:t+k, then for every intermediate state s;,7 € [, + k] we
can also consider the sub-trajectory s;..+ a valid experience,
where option o is initiated at state s; and terminated at ;..
Therefore instead of updating Q(s, o) only once for state s,
it is updated for all intermediate states (lines 18-20), which
drastically increases the efficiency for experience usage.

C. Discussion

In this subsection we discuss some of the advantages and
shortcomings of the proposed method. Unlike conventional
reinforcement learning approaches where manual design of
rewards is necessary, STL provides a way to conveniently
specify complicated task goals while naturally translates the
specifications to rewards. In addition, since robustness is
a continuous measure of satisfiability, the resulting reward
structure helps to speed up learning of the flat policies much
like potential-based reward shaping [8].

The correctness and completeness of the proposed algo-
rithm are determined by the options framework. Here we
introduce the notion of hierarchical optimality. A policy is
said to be hierarchically optimal if it achieves the highest
cumulative reward among all policies consistent with the
given hierarchy [26]. In general, a hierarchical learning algo-
rithm with a fixed set of options converges to a hierarchically
optimal policy [17], which is the case for the HSTL-learning
algorithm. More specifically, the HSTL-learning algorithm
will find a hierarchically optimal policy p* that satisfies

@ (s) = argmaxV*(s) (16)

"

for a fixed set of options (V7 defined in Equation (I3)).
Whether robustness of the STL specification is satis-
fied/maximized depends on the set of options provided to
the algorithm. A policy leading to trajectories that maximize
the robustness of the given STL formula will be found if the
trajectories can be constructed from the options provided.
Therefore the correctness and completeness of the proposed
algorithm are related to the hierarchical optimality property,
and hence also depend on the set of options provided.

On complexity, Algorithm [I| requires &k + n operations per
update. Here k is the number of steps the current option

takes to terminate, and n is the number of elements in
the set Op. n depends on the number of flat policies and
how Or is constructed. Like Q-learning, the number of
training steps required for convergence depends largely on
the learning parameters listed in Table [[I, and convergence is
guaranteed if each state-action pair is visited infinitely often
(convergence guarantee discussed in Section [[I-A).

Finally, it is worth mentioning that multiple trajectories
exist that maximally satisfy a given STL formula (for ex-
ample any trajectory that passes through z = 1 maximally
satisfy ¢ = Qpop[(x > 0) A (z < 2)]). The proposed
method chooses only the most greedy trajectory given the
set of available options. This takes away some flexibility
and the diversity of policies an agent can learn, but is also
a predictable characteristic that can be used towards one’s
advantage.

IV. CASE STUDY

In this section we evaluate the performance of the pro-
posed method in a simulated environment, and provide a
discussion of the results. As depicted in Figure (1), a mobile
robot navigates in a 15 x 15 grid world with three rectangular
regions A, B, C enclosed by colored borders. The state
space of the robot is its 2D position s = (z,y), which
takes 225 discrete combinations. The robot has an action
space A = {Up, Down, Left, Right}. The robot’s transition
model entails that it follows a given action with probability
0.7, or randomly choose the other three actions each with
probability 0.1. The robot has full state observability but
does not have knowledge about its transition model. The goal
is for the robot to interact with the environment by taking
sequences of actions and observing the resultant states, and
in the end learn a policy that when followed satisfy the STL
specification

® = 00,00) Q10,4004 A Cp0,40)¥B A Qpo,a0)¥c), (17)
where

Ya=(x>3)N (<9I A(y>10)A(y < 14),

vp=(x>DA(x<5A@y>1)A@Yy<bhH), (18)

Yo=(@>NA(x<I)AYy>1)A(y<T).

In English the above specification says “for as long as the
robot is running (Ojg), enter regions A, B and C every
40 time steps”. This is a cyclic task with no termination.
Three primitive options are constructed o; = (I;, m;, B;), i =
A, B,C. Here we let their initiation sets to be the entire
state space i.e. I; = .5, which means all three options can be
initiated anywhere. The termination map is given by

Buls) { 1 5= ar%égax (r(s,v;)) (19a)

0 otherwise, (19b)

which indicates that each option only terminates when enter-
ing a state where the robustness of that state with respective
to the corresponding ; is maximum. The last step is to

Up

S - tejn;_|.'.|_;_.a‘gh

Down i]

O = N WLRUVLO N ® O
T

i
0 1 2 3 4 5 6 7 8
X

" " "
9 10 11 12 13 14

Fig. 1 : A 15 x 15 grid world simulation environment. A, B, C' are
three regions the robot can visit. The robot can choose to move in
the four directions shown in the figure. The probability of moving
in the desired direction is 0.7 and the probability of moving in any
of the three undesired directions is 0.1

construct the set of temporally combined options. Here we
used Or = {OA, OB,0C,0AB,0AC,0BC, OABC} (the hypen
in the subscript is dropped to save space). Note that the
order of subscript is the order in which each primitive
option is executed. To obtain a reasonable exploration-
exploitation ratio, an € — greedy exploration policy is carried
out. The agent follows the greedy policy (exploitation) with
probability 1 — €, and chooses a random option/action with
probability e (exploration). The € — greedy exploration is
implemented both at the options policy p : S — Op and
flat policy m : S — A level. It is important that the flat
policies converge faster and takes greedy actions at higher
probability than the options policy because execution of
options depend on the flat policies. This is enforced by
decaying the exploration probabilities e linearly with time
for both 7(s) and u(s) (e(t) = eg — d x t where d is
the rate of decay) while ensuring that €fjqtpolicies decay
faster. The exploration probabilities € have a lower limit
of 0.1 which is to preserve some exploration even near
convergence. Table [[] shows the learning parameters used
in simulation. Even though the task specified by the STL
formula in Equation (I7) is persistent without termination,
we divide our learning process in episodes of 200 option
choices. That is to say that within each episode the robot
chooses an option according to the € — greedy policy and
executes the option to termination, and repeat for 200 times.
Then the robot is randomly placed at another location and
the next learning episode starts. We performed the training
process for 1200 episodes on a Mac with 3 GHz processor
and 8 GB memory, and the training took 36 minutes 12
seconds to complete. The resulting policies and two sample
runs are presented in Figure (2).

Figures (2a), (2b), and (2c) shows the three flat policies
maA, ™, and m¢ learned by the algorithm. The red dot
represents the termination state for each option defined by the

Policy for primitive option A (m.(s))

Policy for primitive option B (7z(s))

Policy for primitive option C (7c(s))

A A A
W = = T |——— =8 Whepepg T = up b T I = s
] I e P == S AL] St S Lppni=e
ooz - --- P i FlraT T i R = 1 1
o - - T [- [R R
T T T T — T TTo oo oo T T
; T A A Y S B B B B o | T
I AN - [T | SRR > e T -
7 -— 7 — — -— -— b —— e —— —— i — -—
Y T O O B _t_ 1= ol 4 L T s 1
I B B bt spobo b SR DERE NN b sl ! NN DR
ot]t D RN DR — ol _f $
I DO O T tot]t N Y e N SN RS SEAN b
P O O O O O I — ot NS DR TR A MR NN TN D EERE O TS BE
I I [I B al ot 8l N IO T T A
ol 1t 1 1 t1t [ot 1 1t ol [
01 2 3 4 5 6 7 8 9101121314 01 2 3 45 6 7 8 9101121314 01 2 3 4 5 6 7 8 9101121314
X X X
(a) Primitive policy ma (b) Primitive policy 7 (¢) Primitive policy m¢
Options Policy p Sample Run #1 Sample Run #2
o ox A A
Ul o o e 060 | o o 14 s 14 s
13} 0o e o0 e 0 0 o oo | o o 13 —c 13 —c
12| e 0o . oo-o| o o 12 2f
1f e e e I T R Y ool o o 1 1}
101 e e o oo e o 10 10
9l @@ @ @ @ @ O O @ 0 O O @ e 9t 9t
o o
L B e e e e 0 0 e 0 o o o oe = a L, 8F L, 8F i
7} e e -0 -0 -0 6 -0 80 7t 7t
6l 6 ® 6 8 @ 6 6 O 6 R 6] 6] e
[P FOR P Lt st st
40 R T) o 0 @ © 0@ o 4 it s e 4 - —
3f e o o o o o o o 3k ! 3k
20 e o o o o o o e o . 2} ! 2}
1l-e o 1k * s
Of @ @ @ @& & @ & 0 0 & & & @ O @ of of
6 1 2 3 A‘l 5 6 } 8 9 10 11 12 13 14 6 1 2 3 A‘l 5‘ é } é 9 10 11 1‘2 1‘3 1‘4 6 1 2 3 A‘l 5‘ é } é 9 10 11 1‘2 1‘3 1‘4

X

(d) Options policy p

Fig. 2 : Learning results for 1200 episodes of training. Subfigures (a), (b), and (c) shows the learned flat policies 7

(e) Sample run with
initial position s = (14, 1)

X X

(f) Sample run with
initial position s = (7, 6)

: S — A. The

red dot in each figure denotes the state of termination defined by the termination map 3; : S — [0, 1]. The subfigure (d) shows the
learned options policy u : S — O. Subfigures (e) and (f) illustrate samples run of following the learned policies from two different initial

positions shown by the red star

TABLE II: Parameters used in simulation

Parameter Description Value
YA, VB, YC Discount factors for flat policies 0.9
ap,ap,qC Learning rates for flat policies 0.2
Initial exploration probability for
€Ag» €Bo» €Co flat policy learning 0.8
Linear decay rate for flat policy’s _
da,dp, do explorition probabililt)y ! 107°
Yo Discount factor for options policy 0.9
Qo Learning rate for options policy 0.5
. Initial exploration probability for options 08
o0 policy learning :
d Linear decay rate for options policy’s 10-4
© exploration probability

termination map. In this case the flat policies lead the robot
to this state because it is the state of maximum robustness
(but termination can be any state or set of states defined by
the user). Figure (2d) shows the learned options policy u(s).
This is the policy that the robot follows at the highest level.
For example u(s) = opc at state s = (5,11), therefore
option op and o will be executed to termination in order.
For the STL formula in Equation (T7), the desired trajectory
as t — oo will be a loop that goes through regions A, B
and C, the action/option taken at any other state should lead

the agent to this loop along a trajectory that evaluates to the
highest robustness degree. Figures (2e) and (2f) shows two
sample runs with different initial positions (indicated by the
red star), and the resulting behavior is as expected. The color
of the arrows corresponds to the color coding of the options
in the previous options policy subfigure, and are subject
to overlay. It can be observed that although for the 1200
episodes of training neither the flat policies nor the options
policy has converged (for example at state s = (0,14) in
mc), the resulting policies succeed in navigating the robot
towards the desired behavior.

As discussed in Section |III-C| the quality of the learned
policies with respective to maximizing robustness depends on
the set of options provided to the algorithm. Figure (3) shows
a comparison of cumulative reward per episode between two
different sets of temporally combined options. The first is the
set O, = O used in previous simulation. The second set
O1, = {04,0B,0¢,04B,0B4,04C;0CA; 0BC,0CB; 0OABC,
O0ACB,OBAC;,OBCA,OCAB, OC'BA} takes into account the
permutation of primitive options. Results show that using
options set Op2 achieves an average of 34.8% higher cumu-
lative reward per episode compared to using Opo (negative
reward values are due to € — greedy random exploration
when following learned policies). However the time used to

train the agent for the same 1200 episodes is 43 minutes
51 seconds for Opo compared to 36 minutes 12 seconds for
Or1. In a way this allows the user to leverage a tradeoff
between computational resource and optimality by deciding
on the number and complexity of the options provided to the
framework.

—200 |

—a00 |

=600 |

—800 |

Accumulated Reward

—-1000

—1200

—1400

0 200 400 600 800 1000

Episode

1200

Fig. 3 : Comparison of cumulative reward per episode for two sets
of temporally combined options

V. CONCLUSION

In this paper we have developed a reinforcement learning
algorithm that takes in an STL formula as task specifi-
cation, and learns a hierarchy of policies that maximizes
the expected sum of discounted robustness degree with
hierarchical optimality. We have taken advantage of the
options framework to provide to the learning agent a set of
temporally extended actions (options), and the correctness”
of choosing an option at a state is evaluated by calculating the
robustness degree of the resulting trajectory against the given
STL formula. This naturally becomes the one step immediate
reward in the reinforcement learning architecture and thus
takes away the burden of manually designing a reward
structure. We have shown in simulation that the proposed
algorithm learns an options policy and the dependent flat
policies that guide the agent to satisfy the task specifica-
tion with a relatively low number of training steps. The
temporal and state abstraction provided by options and STL
respectively decomposes a complicated task into a hierarchy
of simpler subtasks, and thus modularizing the learning
process and increasing the learning efficiency. Moreover, the
policies learned for the subtasks can be reused for learning a
different high level task and therefore knowledge transfer
is enabled. In future work we will look at applying the
proposed algorithm to more realistic problems and extending
from discrete state and action spaces to continuous ones.

REFERENCES

[1] G. Tesauro, “Temporal difference learning and td-gammon,” Commu-
nications of the ACM, vol. 38, no. 3, pp. 58-68, 1995.

[2]

[3]

[5]

[6]

[8]
[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger,
and E. Liang, “Autonomous inverted helicopter flight via reinforcement
learning,” International Symposium on Experimental Robotics, 2004.
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, 2nd ed. The MIT Press, 2012.

S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training of
Deep Visuomotor Policies,” Arxiv, p. 6922, 2015. [Online]. Available:
http://arxiv.org/abs/1504.00702

V. Mnih, K. Kavukcuoglu, D. Silver, A. a. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533,
2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D.
Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, and K. Kavukcuoglu, “Mastering
the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7585, pp. 484-489, 2016. [Online]. Available:
http://dx.do1.org/10.1038/nature16961

A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations : Theory and application to reward shaping,” Sixteenth
International Conference on Machine Learning, vol. 3, pp. 278-287,
1999.

A.Y. Ng, “Shaping and policy search in reinforcement learning,” Ph.D.
dissertation, Computer Science, UC Berkeley, Berkeley, CA, 2003.
A. Dutech, T. Edmunds, J. Kok, M. Lagoudakis, M. Littman, M. Ried-
miller, B. Russell, B. Scherrer, R. Sutton, S. Timmer, N. Vlassis,
A. White, and S. Whiteson, “Reinforcement Learning Benchmarks and
Bake-offs I1,” Workshop at 2005 NIPS Conference, pp. 1-50, 2005.
J. Kober and J. Peters, “Imitation and Reinforcement Learning,”
Robotics and Automation Magazine, vol. 17, no. 2, pp. 55-62, 2010.
S. Mahadevan, “Average reward reinforcement learning: Foundations,
algorithms, and empirical results,” Machine Learning, vol. 22, no. 1-3,
pp. 159-195, 1996.

A. Schwartz, “A Reinforcement Learning Method for Maximizing
Undiscounted Rewards,” Proceedings of the Tenth International Con-
ference on Machine Learning, pp. 298-305, 1993.

P. Tadepalli and D. Ok, “H-learning: A reinforcement learning method
for optimizing undiscounted average reward,” Corvallis, OR, USA,
Tech. Rep., 1994.

M. L. Puterman, “Markov Decision Processes: Discrete Stochastic
Dynamic Programming,” p. 672, 1994.

J. Fu and U. Topcu, “Probably approximately correct MDP learning
and control with temporal logic constraints,” CoRR, 2014.

D. Sadigh, E. Kim, S. Coogan, S. Sastry, and S. Seshia, “A learning
based approach to control synthesis of markov decision processes for
linear temporal logic specifications,” CoRR, 2014.

R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and Semi-
MDPs: Learning, Planning, and Representing Knowledge at Multiple
Temporal Scales,” Artificial Intelligence, vol. 1, no. 98-74, pp. 1-39,
1998.

A. G. Barto, “Recent Advances in Hierarchical Reinforcement
Learning,” Discrete Event Dynamic Systems:Theory and Application,
vol. 13, p. 4177, 2003.

C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disser-
tation, King’s College, Cambridge, England, 1989.

R. S. Sutton, “Learning to predict by the methods of temporal dif-
ferences,” in MACHINE LEARNING. Kluwer Academic Publishers,
1988, pp. 9-44.

F. S. Melo, “Convergence of Q-learning: A simple proot,” Institute Of
Systems and Robotics, Tech. Rep, pp. 1-4.

A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6246 LNCS, pp. 92-106, 2010.

O. Maler and D. Nickovic, “Monitoring Temporal Properties of
Continuous Signals,” Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems, pp. 152 — 166, 2004.

S. Sadraddini and C. Belta, “Robust Temporal Logic Model Predictive
Control,” 53rd Annual Conference on Communication, Control, and
Computing (Allerton), 2015.

M. Herrmann, “RL 5 : On-policy and off-policy algorithms,” Edin-
burgh, UK, 2015.

http://arxiv.org/abs/1504.00702
http://dx.doi.org/10.1038/nature16961

[26] T. G. Dietterich, “Hierarchical Reinforcement Learning with the
MAXQ Value Function Decomposition,” Journal of Artificial Intel-
ligence Research, vol. 13, pp. 227-303, 2000.

	I INTRODUCTION
	II BACKGROUND
	II-A Reinforcement Learning Framework and Q-Learning
	II-B Option-Based Hierarchical Reinforcement Learning
	II-C Signal Temporal Logic (STL)

	III REINFORCEMENT LEARNING FOR STL SPECIFIED GOALS
	III-A Problem Formulation
	III-B The Hierarchical STL Learning Algorithm (HSTL-Learning)
	III-C Discussion

	IV CASE STUDY
	V CONCLUSION
	References

