
Hierarchical Temporal Logic Guided Reinforcement Learning

Xiao Li 1 Calin Belta 1

Abstract

We present a framework that allows specification
of tasks in terms of temporal logic (TL). Partic-
ularly, we allow tasks to be specified at multiple
levels of spatio-temporal abstractions. Using the
transformation between a TL formula and a finite
state automaton, our method constructs a reward
function from the hierarchical task specification
along with a hierarchical policy that can be trained
end-to-end. We show that our method is able to
learn complex logical behaviors in both discrete
and continuous state and action spaces.

1. Introduction
Reinforcement learning (RL) agents are capable of exploit-
ing faulty reward functions (commonly referred to as reward
hacking (Amodei et al., 2016)). As a result, undesirable
behaviors that maximizes the given reward are produced
(Clark & Amodei, 2016) (Lehman et al., 2018). Being able
to accurately specify tasks in terms of reward functions is
critical in reinforcement learning.

There are various means a reward function can be obtained.
In addition to manually shaping a real valued function, the
reward can be learned from human demonstrations as is com-
monly performed in inverse reinforcement learning (Abbeel
& Ng, 2004). Learning rewards from human preferences
(Christiano et al., 2017) has been shown to produce agent
behaviors that are otherwise difficult to manually specify
(simulated robotic agent learning to backflip). Additional
methods include learning via agent debate (Irving et al.,
2018) and natural language feedback (Chevalier-Boisvert
et al., 2018), (Singh, 2017). The larger problem of design-
ing evaluation metrics (rewards in the case of reinforcement
learning) that align with the user’s intentions is referred to
as value alignment.

In this work, we focus on utilizing temporal logic (TL) as
the task specification language to facilitate control policy

*Equal contribution 1Department of Mechanical Engineering,
Boston University, Boston, USA. Correspondence to: Xiao Li
<xli87@bu.edu>.

learning. Temporal logic is a formal language capable of
expressing logical relationships of propositions or predi-
cates over time. It is suitable for defining high level tasks
with complex logical structure (such as a traffic rule, a cook-
ing recipe, etc). We find TL to be an effective means of
incorporating high level prior knowledge into the learning
agent.

A difficulty in defining tasks in temporal logic is the gap
between symbolic high-level task representations and con-
tinuous low-level state features. For example, when defining
the task of making a burger, we usually divide the task into
a set of sub-tasks such as preheating the grill, oil the grate,
etc. Then we go on to provide more detailed instructions for
each of the sub-tasks. The robot’s state space most likely
consists of sensor readings and extracted features, while its
action space is likely the motor commands. Making a direct
connection between the symbolic tasks and the state and
action space can be challenging. It would be much simpler
to be able to define tasks in multiple levels of abstractions.

Our contribution in this work is to provide a hierarchical
approach for task definition such that high-level tasks and
low-level controls can be connected with layers of task ab-
stractions. Even though the task may be time and history
dependent (non-Markovian), the resulting system can be
trained end-to-end with Markovian RL algorithms and a
multi-level hierarchical policy can be obtained. Our method
extends that of (Li et al., 2018) and shows that adding speci-
fication hierarchy not only reduces the complexity in book-
keeping for complex tasks, but also improves the sample
efficiency during learning.

2. Related Work
Reward shaping (Ng et al., 1999) is a popular method that
transforms sparse rewards to potential-based rewards while
ensuring invariance of the optimal policy. Recent efforts
in value alignment include iterated amplification (Chris-
tiano et al., 2018), cooperative inverse reinforcement learn-
ing (Hadfield-Menell et al., 2016), etc where the agent and
human work together to learn the desired policy (possibly in
an iterative process). Authors of (Leike et al., 2018) provide
an up-to-date overview of recent progress in value align-
ment. Compared to these efforts, the method presented here
focuses on a simpler, more structured and deterministic way

Hierarchical Temporal Logic Guided Reinforcement Learning

of specifying complex behaviors.

The combination of temporal logic with MDP has been stud-
ied by authors of (Giacomo et al., 2018) and (Camacho et al.,
2017). The aim of their work is to solve the non-Markovian
reward decision process (NMRD) by using temporal logics
and automata. Our work differs mainly in the added ben-
efit of handling hierarchical task specifications. We also
introduce and use a notion of robustness as a continuous
measure to relate the agent’s state features with its progress
towards satisfying the temporal logic specification as oppose
to manually design the measure.

There is also a connection between our work and hierar-
chical learning. Here we distinguish between policy hier-
archy and task hierarchy. The options framework (Sutton
et al., 1999) learns a temporally abstracted hierarchical pol-
icy given a task. The task itself has no hierarchical structure.
On the other hand, task hierarchy (such as the task graph
in (Dietterich, 2000)) aims to divide complex tasks into
simpler sub-tasks and either gradually increase the task dif-
ficulty as the agent learns or combine a library of simple
policies to form more capable policies. Task hierarchy is
commonly realized using curriculum learning (Bengio et al.,
2009), multi-task learning (Andreas et al., 2017) and pol-
icy composition (van Niekerk et al., 2018). Our method
combines both task and policy hierarchy by allowing the
user to specify tasks at different levels of spatio-temporal
abstraction (much like writing classes and functions in pro-
gramming) and the resulting system generates a hierarchical
policy that can be trained end-to-end. Policies for sub-tasks
can be easily extracted at test time.

3. Preliminaries
We start with the definition of a Markov Decision Process
and the general formulation of the reinforcement learning
problem (Section 3.1). Then we introduce the syntax and se-
mantics of scTLTL (Section 3.2.1) along with the definition
of its equivalent FSA (Section 3.2.2). Section 3.2.3 shows
how two FSAs can be combined together to form a product
FSA. Finally, Section 3.3 presents a way to combine a MDP
with a FSA such that a policy learned from the combined
MDP is able to satisfy the scTLTL formula.

3.1. Reinforcement Learning

Definition 1. An MDP is defined as a tuple M =
〈S,A, p(·|·, ·), r(·, ·, ·)〉, where S ⊆ IRn is the state space ;
A ⊆ IRm is the action space (S and A can also be discrete
sets); p : S ×A× S → [0, 1] is the transition function with
p(s′|s, a) being the conditional probability density of taking
action a ∈ A at state s ∈ S and ending up in state s′ ∈ S;
r : S ×A× S → IR is the reward function with r(s, a, s′)
being the reward obtained by executing action a at state s

and transitioning to s′.

We define a task to be the process of finding the optimal
policy π? : S → A (or π? : S × A → [0, 1] for stochastic
policies) that maximizes the expected return, i.e.

π? = arg max
π

Eπ[

T−1∑
t=0

r(st, at, st+1)], (1)

The horizon of a task (denoted T) is defined as the maximum
allowable time-steps of each execution of π and hence the
maximum length of a trajectory. In Equation (1), Eπ[·] is
the expectation following π. The state-action value function
is defined as

Qπ(s, a) = Eπ[

T−1∑
t=0

r(st, at, st+1)|s0 = s, a0 = a] (2)

i.e. it is the expected return of choosing action a at state s
and following π onwards. For off-policy actor critic meth-
ods such as deep deterministic policy gradient (Lillicrap
et al., 2015), Qπ is used to evaluate the quality of policy
π. Parameterized QπθQ and πθπ (θQ and θπ are learnable
parameters) are optimized alternately to obtain π?θπ .

3.2. scTLTL and Finite State Automata

3.2.1. SYNTACTICALLY CO-SAFE TRUNCATED LINEAR
TEMPORAL LOGIC (SCTLTL)

We consider tasks specified with syntactically co-safe Trun-
cated Linear Temporal Logic (scTLTL) which is derived
from truncated linear temporal logic(TLTL) (Li et al., 2018).
The syntax of scTLTL is defined as

φ := > | f(s) < c | ¬φ | φ∧ψ | ♦φ | φU ψ | φ T ψ | ©φ
(3)

where> is the True Boolean constant. s ∈ S is a MDP state
in Definition 1; f(s) < c is a predicate over the MDP states
where c ∈ IR; ¬ (negation/not) and ∧ (conjunction/and) are
Boolean connectives. ♦ (eventually), U (until), T (then),
© (next), are temporal operators.⇒ (implication) and and
∨ (disjunction/or) can be derived from the above operators.

We denote st ∈ S to be the MDP state at time t, and st:t+k
to be a sequence of states (state trajectory) from time t to
t+ k, i.e., st:t+k = stst+1...st+k. The Boolean semantics
of scTLTL is defined as:

Hierarchical Temporal Logic Guided Reinforcement Learning

st:t+k |= f(s) < c ⇔ f(st) < c,

st:t+k |= ¬φ ⇔ ¬(st:t+k |= φ),

st:t+k |= φ⇒ ψ ⇔ (st:t+k |= φ)⇒ (st:t+k |= ψ),

st:t+k |= φ ∧ ψ ⇔ (st:t+k |= φ) ∧ (st:t+k |= ψ),

st:t+k |= φ ∨ ψ ⇔ (st:t+k |= φ) ∨ (st:t+k |= ψ),

st:t+k |=©φ ⇔ (st+1:t+k |= φ) ∧ (k > 0),

st:t+k |= ♦φ ⇔ ∃t′ ∈ [t, t+ k) st′:t+k |= φ,

st:t+k |= φ U ψ ⇔ ∃t′ ∈ [t, t+ k) s.t. st′:t+k |= ψ

∧ (∀t′′ ∈ [t, t′) st′′:t′ |= φ),

st:t+k |= φ T ψ ⇔ ∃t′ ∈ [t, t+ k) s.t. st′:t+k |= ψ

∧ (∃t′′ ∈ [t, t′) st′′:t′ |= φ).

A trajectory s0:T is said to satisfy formula φ if s0:T |= φ.

The quantitative semantics (also referred to as robustness)
is defined recursively as

ρ(st:t+k,>) = ρmax,

ρ(st:t+k, f(st) < c) = c− f(st),

ρ(st:t+k,¬φ) = − ρ(st:t+k, φ),

ρ(st:t+k, φ ⇒ ψ) = max(−ρ(st:t+k, φ), ρ(st:t+k, ψ))

ρ(st:t+k, φ1 ∧ φ2) = min(ρ(st:t+k, φ1), ρ(st:t+k, φ2)),

ρ(st:t+k, φ1 ∨ φ2) = max(ρ(st:t+k, φ1), ρ(st:t+k, φ2)),

ρ(st:t+k,©φ) = ρ(st+1:t+k, φ) (k > 0),

ρ(st:t+k,♦φ) = max
t′∈[t,t+k)

(ρ(st′:t+k, φ)),

ρ(st:t+k, φ U ψ) = max
t′∈[t,t+k)

(min(ρ(st′:t+k, ψ),

min
t′′∈[t,t′)

ρ(st′′:t′ , φ))),

ρ(st:t+k, φ T ψ) = max
t′∈[t,t+k)

(min(ρ(st′:t+k, ψ),

max
t′′∈[t,t′)

ρ(st′′:t′ , φ))),

where ρmax represents the maximum robustness value. A
robustness of greater than zero implies that st:t+k satisfies
φ and vice versa (ρ(st:t+k, φ) > 0 ⇒ st:t+k |= φ and
ρ(st:t+k, φ) < 0 ⇒ st:t+k 6|= φ). The robustness is used
as a measure of the level of satisfaction of a trajectory s0:T

with respect to a scTLTL formula φ.

3.2.2. FINITE STATE AUTOMATA (FSA)

Definition 2. An FSA corresponding to a scTLTL formula
φ. is defined as a tuple Aφ = 〈Qφ,Ψφ, qφ,0, pφ(·|·),Fφ〉,
where Qφ is a set of automaton states; Ψφ is the input
alphabet which is a set of simple logic formulas without

temporal operators; qφ,0 ∈ Qφ is the initial state; pφ :
Qφ ×Qφ → [0, 1] is a conditional probability defined as

pφ(qφ,j |qφ,i) =

{
1 ψqφ,i,qφ,j is true
0 otherwise.

or

pφ(qφ,j |qφ,i, s) =

{
1 ρ(s, ψqφ,i,qφ,j) > 0

0 otherwise.

(4)

Fφ is a set of final automaton states.

Here qφ,i is the ith automaton state of Aφ. ψqφ,i,qφ,j ∈ Ψφ

is the predicate guarding the transition from qφ,i to qφ,j .
Because ψqφ,i,qφ,j is a predicate without temporal opera-
tors, the robustness ρ(st:t+k, ψqφ,i,qφ,j) is only evaluated
at st. Therefore, we use the shorthand ρ(st, ψqφ,i,qφ,j) =
ρ(st:t+k, ψqφ,i,qφ,j). The translation from a TLTL formula
to a FSA can be done automatically with available packages
like Lomap (Vasile, 2017). Examples of scTLTL formula
and their corresponding FSAs are provided in Section 6.1.1.

3.2.3. PRODUCT AUTOMATA

It is possible to combine multiple FSAs into one by taking
their product. Transitioning on the combined FSA can lead
to satisfaction of conjunction or disjunction (depending on
the termination condition) of the corresponding formula.
We take inspiration from (Molnár & Vörös) and provide the
definition of the product of two FSAs.

Definition 3. Given Aφ1
= 〈Qφ1

,Ψφ1
, qφ1,0, pφ1

,Fφ1
〉

and Aφ2
= 〈Qφ2

,Ψφ2
, qφ2,0, pφ2

,Fφ2
〉 corresponding to

formulas φ1 and φ2, the FSA of φ∧ = φ1 ∧ φ2 is the prod-
uct automaton of Aφ1 and Aφ1 , i.e. Aφ1∧φ2 = Aφ1 ×
Aφ2

= 〈Qφ1∧φ2
,Ψφ1∧φ2

, qφ1∧φ2,0, pφ1∧φ2
,Fφ1∧φ2

〉
where Qφ1∧φ2

= Qφ1
×Qφ2

is the set of product automaton
states, qφ1∧φ2,0 = (qφ1,0, qφ2,0) is the product initial state,
Fφ1∧φ2

= Fφ1
∩Fφ2

are the final accepting states. Follow-
ing Definition 2, for states qφ1∧φ2 = (qφ1 , qφ2) ∈ Qφ1∧φ2

and q′φ1∧φ2
= (q′φ1

, q′φ2
) ∈ Qφ1∧φ2 , the transition proba-

bility pφ1∧φ2
is defined as

pφ1∧φ2(q′φ1∧φ2
|qφ1∧φ2) =

1 pφ1

(q′φ1
|qφ1

)×
pφ2

(q′φ2
|qφ2

) = 1

0 otherwise.
(5)

Reaching Fφ1∧φ2
means satisfying φ1 ∧ φ2. We can also

use Aφ1∧φ2
to find the termination state that satisfies φ1∨φ2

i.e. Fφ1∨φ2 = Fφ1 ∪ Fφ2 . The product of multiple FSAs
can be obtained in the same fashion iteratively.

Hierarchical Temporal Logic Guided Reinforcement Learning

3.3. FSA Augmented MDP

The FSA augmented MDPMφ (Li et al., 2018) establishes
a connection between the TL specification and the standard
reinforcement learning problem. A policy learned using
Mφ has implicit knowledge of the FSA through the automa-
ton state qφ ∈ Qφ.

Definition 4. (Li et al., 2018) An FSA augmented MDP cor-
responding to FSA Aφ = 〈Qφ,Ψφ, qφ,0, pφ(·|·),Fφ〉
(constructed from scTLTL formula φ) and MDP
〈S,A, p(·|·, ·), r(·, ·, ·)〉) is defined as Mφ =

〈S̃φ, A, p̃φ(·|·, ·), r̃φ(·, ·),Fφ〉 where S̃φ ⊆ S × Qφ,
p̃φ(s̃′φ|s̃φ, a) is the probability of transitioning to s̃′φ given
s̃φ and a,

p̃φ(s̃′φ|s̃φ, a) = pφ
(
(s′, q′φ)|(s, qφ), a

)
=

{
p(s′|s, a) pφ(qφ′|qφ, s) = 1

0 otherwise.

(6)

pφ is defined in Equation (4). r̃φ : S̃φ × S̃φ → IR is the
FSA augmented reward function, defined by

r̃(s̃φ, s̃
′
φ) = ρ(s′, D

qφ
φ), (7)

where Dqφ
φ =

∨
q′φ∈Ωqφ

ψqφ,q′φ represents the disjunction of
all predicates guarding the transitions that originate from
qφ (Ωqφ is the set of automata states that are connected with
q through outgoing edges).

The reward in Equation (7) encourages transitioning out of
the current q state and by repeatedly doing so eventually
reach the final state. As a quick example, for the FSA in
Figure (2c), Dq2,0

φf2
= (ψC ∧ ¬ψD) ∨ (ψC ∧ ψD) = ψC ,

D
q2,1

φf2
= ψD. A policy π?φ is said to satisfy φ if

π?φ = arg max
πφ

Eπφ [1(ρ(s0:T , φ) > 0)]. (8)

where 1(ρ(s0:T , φ) > 0) is an indicator function with value
1 if ρ(s0:T , φ) > 0 and 0 otherwise.

4. Problem Formulation and Approach
We start by defining the following terms

• A scTLTL formula φf = ff (ψ) is a flat formula if
it is a TL formula over predicates (ff (·) map a set of
predicates to a scTLTL formula using the Boolean and
temporal operators in Equation (3))

• The FSA Aφf = 〈Qφf ,Ψφf , qφf ,0, pφf ,Fφf 〉 is re-
ferred to as flat FSA (as in Definition 2)

• A scTLTL formula φh = fh(φf) is a hierarchical
formula if it is a TL formula over flat formula (fh(·)
maps a set of scTLTL formula to a new formula, φf =
{φf1 , ..., φfn} is a set of flat formula).

• The FSA Aφh is referred to as hierarchical FSA and is
defined by Aφh = 〈Qφh ,Φφh , qφh,0, pφh ,Fφh〉

We can see that compared to Aφf , the input alphabet of
Aφh are scTLTL formula instead of first order formula. In
the definitions above, φf can be seen as sub-tasks and φh

is a high level task. One can construct multiple layers of
hierarchy (such as φh2 = fh(φh1) where φh1 = ff (ψ)).
Without loss of generality, we will focus on developing our
method on 2 layers of hierarchy in this work.

Problem 1. Given an MDPM = 〈S,A, p(·|·, ·), r(·, ·, ·)〉
with unknown transition dynamics p(·|·, ·), a set of flat
scTLTL formula φf = {φf1 , ..., φfn} and a hierarchical
scTLTL formula φh = fh(φf), find a policy π?φh such that

π?φh = arg max
π
φh

Eπφh [1(ρ(s0:T , φ
h) > 0)]. (9)

where 1(ρ(s0:T , φ
h) > 0) is an indicator function with

value 1 if ρ(s0:T , φ
h) > 0 and 0 otherwise.

π?φh in Equation (9) is said to satisfy φh. Problem 1 defines
a policy search problem. Following the optimal policy π?φh
should result in trajectories that satisfy φh in expectation.
We propose to solve Problem 1 with a hierarchical exten-
sion of the FSA augmented MDP (Definition 4). On a high
level, because Φφh - the input alphabet of Aφh , is a set of
scTLTL formula consisting of base formula φf connected
by Boolean operators. Instead of only learning on the hierar-
chical FSAAφh , we additionally construct a set of sub-FSA
from Φφh by taking the product of the corresponding flat
FSA Aφf using Definition 3. We then add the sub-FSA to
the original FSA augmented MDP. We show that by adding
a small number of discrete dimensions to the state space,
we can significantly facilitate learning of complicated tasks.
More details will be provided in the following sections.

5. Hierarchical Automata Guided
Reinforcement Learning

Given an MDP and a hierarchical scTLTL formula φh with
its constituent flat formula φf , we can construct a FSA
augmented MDP Mφh using Definition 4. However, be-
cause Definition 4 is defined for a flat formula, we can
no longer use the step-based Markovian reward in Equa-
tion (7). More specifically, D

q
φh

φh
=
∨
q′φh
∈Ωq

φh
φq

φh
,q′
φh

is no longer a flat formula of predicates. Comparing to the
Definition of the D operator in Equation (7), we now have

Hierarchical Temporal Logic Guided Reinforcement Learning

an scTLTL formula φq
φh
,q′
φh

guarding the outgoing edge

(qφh , q
′
φh) instead of a predicate ψq

φh
,q′
φh

. If we were to
use Equation (7) directly, we would end up with a history-
dependent reward r̃t(s̃0:t, s̃0:t+1) = ρ(s0:t+1, D

q
φh

φh
). This

reward function can not be used with most reinforcement
learning algorithms under the Markovian assumption.

Instead of trying to learn directly on Mφh , we design a
Markovian reward by augmentingMφh with a set of sub-
FSAs constructed from φf . Specifically, we introduce the
hierarchical FSA augmented MDP as follows

Definition 5. Given a hierarchical scTLTL
formula φh = fh(φf), the corresponding
FSAs Aφh = 〈Qφh ,Ψφh , qφh,0, pφh(·|·),Fφh〉
and Aφf = {Aφf1 , ...,Aφfn} where Aφfi =

〈Qφfi ,Ψφfi
, qφfi ,0

, pφfi
(·|·),Fφfi 〉, i ∈ {1, 2, ..., n − 1, n}.

A hierarchical FSA augmented MDP is a tuple
Mh
φh = 〈S̃hφh , A, p̃

h
φh(·|·, ·), r̃hφh(·, ·),Fhφh〉 where

S̃hφh ⊆ S × Qφh × Qφf1 × · · · × Qφfn , p̃hφh(s̃h
′

φh |s̃
h
φh , a) is

the probability of transitioning to s̃h
′

φh given s̃hφh and a,

p̃hφh =

p(s′|s, a) pφh(q′φh |qφh , s)×∏n

i=0 pφfi
(q′
φfi
|qφfi , s) = 1

0 otherwise.

(10)

pφ is defined in Equation (4). Let D
q
φh

φh
=∨

q′
φh
∈Ωq

φh
φq

φh
,q′φ

be similar to that in Definition 4 (in-

stead of guarding predicates ψq
φh
,q′φ

, we have guarding

formula φq
φh
,q′φ

). Let C
q
φh

φh
=
∧
q′
φh
∈Ωq

φh
φq

φh
,q′φ

be the

conjunction alternative toD
q
φh

φh
(referred to asCq

h

to avoid

clutter). Let φf
cqh
⊆ φf be the set of flat formula in Cq

h

,
we define ACqh to be the product automaton constructed
from the FSAs of φf

cqh
. Let qf

Cqh
be the q state of A

Cqh
.

r̃hφh : S̃hφh × S̃
h
φh → IR is the hierarchical FSA augmented

reward function, defined by

r̃hφh(s̃hφh , s̃
h′

φh) = 1
(
ρ(s′, D

q
φh

φh
) > 0

)
+ wρ(s′, D

qf

Cq
h

Cqh
).

(11)

Note that Cq
h

is simply a logic formula of φf
cqh

with only
Boolean operations. A

Cqh
can be obtained by taking the

product of Aφf
cq
h

using Definition 3. The q state of A
Cqh

is

therefore Q
Cqh

: ×
φi∈φfCqh

Qφi (qf
Cqh
∈ Q

Cqh
).

Equation (11) is a weighted reward. Typically the weight
w is set between 0 and 1 so to encourage progress in the

high-level specification more than that in the lower-level
spec (since the ultimate goal is to satisfy φh).

To train using the hierarchical FSA augmented MDP, simply
provide the scTLTL task specifications φh (high-level spec)
and φf (low-level specs), the parameterized policy π(·|θπ)
and value function Q(·|θQ) (if necessary). Construct the
Mh
φh using Definition 5 and train using any suitable RL

algorithm. During training and testing, transitions in the
FSAs are tracked using Equation (10).

An optimal policy found using Definition 5 is guaranteed
to satisfy the hierarchical specification φh = fh(φf). The
advantages of using the hierarchical FSA augmented MDP
over the non-hierarchical version (Definition 4) includes
the ease of specifying complex tasks using abstraction and
improved learning performance (shown in the next section).

6. Experiments
In this section, we introduce our simulation experiment
setup. Particularly, our method is evaluated on a discrete
grid environment and a continuous particle environment.
The environments are presented in Figure 1.

Figure 1. Simulation environments. (left) 2D grid environment
with discrete state and action spaces. (right) 3D particle environ-
ment with continuous state and action spaces.

6.1. Experiment Setup

In the following subsections, we describe the environment
setup as well as the evaluation task used for each environ-
ment.

6.1.1. GRID ENVIRONMENT

As shown in Figure 1 (left), the grid environment consists of
four regions. An agent navigates in this environment with
a set of discrete actions A = {stay, left, right, up, down}.
The MDP state of the agent is simply its 2D coordinates
s = (x, y) where x and y take discrete values from 0 to 8.

We define the hierarchical task for this environment as fol-
lows:

Hierarchical Temporal Logic Guided Reinforcement Learning

• φhG = ♦φf1 ∧ ♦φ
f
2 .

Description: eventually accomplish the tasks described
by φ1 and φ2.

• φf1 = ♦ψA ∨ ♦ψB .
Description: eventually visit region A or B.

• φf2 = ♦(ψC ∧ ♦ψD).
Description: eventually visit region C then D.

Here ψi = |xci − x|+ |yci − y| < th, i ∈ {A,B,C,D} is
a set of predicates defined by the thresholded Manhattan
distance between the agent and the regions. (xci , y

c
i) is the

center coordinate of region i. The FSA corresponding to
φ, φ1, φ2 are shown in Figure 2. These FSAs are used to
construct the products and rewards described in Definition 5.
The states for the hierarchical FSA augmented MDP is
therefore s̃φhG = (x, y, qh, q1, q2) (S̃φhG ∈ Z5

≥0).

(a)

(b)

(c)

Figure 2. FSA for (a) φhG = ♦φf1 ∧♦φ
f
2 , (b) φf1 = ♦ψA ∨♦ψB ,

(c) φf2 = ♦(ψC ∧ ♦ψD)

6.1.2. PARTICLE ENVIRONMENT

As shown in Figure 1 (right), the environment is made of
three large circular regions R1, R2 and R3. Each of the
large region consists of two or three sub-regions. The agent
navigating in this environment is controlled by its x and y
forces (A ∈ IR2). The agent’s MDP state space consists
of the its 2D positions, velocities, and the positions of all
sub-regions (S ∈ IR18).

We define the hierarchical task for this environment as fol-
lows:

• φhP = ♦φfR1
∧ ♦φfR2

∧ ♦φfR3
.

Description: eventually service regions R1, R2 and
R3.

Table 1. Hyperparameters Used For Particle World

HYPERPARM. VALUE HYPERPARAM VALUE

LEARNING RATE 0.0001 HORIZON 150
DISCOUNT 0.98 BATCH SIZE 10
MINIBATCH 64 NUM. EPOCHES 10
CLIPPING 0.2 VALUE COEFF. 0.1
ENTROPY COEFF. 0.14 GAE 0.98
MAX ITERATIONS 700 w 0.2

• φfR1
= ♦ψr11 ∨ (♦ψr12 ∧ ♦ψr13).

Description: to service R1 means to eventually visit
region r11 or eventually visit region r12 and r13.

• φfR2
= ♦(ψr21 ∧ ♦ψr22).

Description: to service R2 means to eventually first
visit r21 and then r22.

• φfR3
= ♦ψr31 ∧ ♦ψr32 .

Description: to service R3 means to eventually visit
regions r31 and r32.

In the above formula, ψi =
√

(xci − x)2 + (yci − y)2 <
th, i ∈ {r11, r12, r13, r21, r22, r31, r32} is a set of predi-
cates defined by the thresholded distance between the agent
and region centers. The FSA for φG (AφhG) has 8 nodes
and 26 edges, AφfR1

has 4 nodes and 8 edges, AφfR2

has 3

nodes and 5 edges, AφfR3

has 4 nodes and 8 edges. Due

to space constraints, the FSAs are not explicitly provided.
The state space for the hierarchical FSA augmented MDP
is S̃φhP ∈ IR18 × Z4

≥0 where the last four discrete dimen-
sions are the automata states. Code for this environment is
adopted from (Lowe et al., 2017).

6.2. Implementation Details

For the grid environment, a greedy policy is obtained us-
ing the Q-Learning (Watkins, 1989) algorithm. We used a
discount factor of 0.99, learning rate of 0.03 and episode
horizon of 100 steps. For exploration, the ε-greedy strategy
is used with ε decaying from 1.0 to 0.1 in 2×105 steps. The
policy is updated for 150k steps.

For the particle environment, we use a feed-forward neural
network to represent the policy. The network has 3 hidden
layers each with 300, 200, 100 ReLu units respectively. The
value function uses a network with the same architecture.
The proximal policy optimization (Schulman et al., 2017) al-
gorithm with general advantage estimation (Schulman et al.,
2015) is used for training. The agent’s position as well as
the positions of all the regions are randomly initialized after
each episode to facilitate generalization. The hyperparame-
ters used in this experiment are provided in Table 1.

Hierarchical Temporal Logic Guided Reinforcement Learning

6.3. Comparison Cases

We compare the method presented in this paper with the
regular FSA augmented MDP (Li et al., 2018). In order to do
so, the hierarchical task specifications in Sections 6.1.1 and
6.1.2 are transformed to their flat form. Specifically φfG =
(♦ψA ∨ ♦ψB) ∧ (♦(ψC ∧ ♦ψD)) and the same is done
to obtain φfP . The state space then becomes S̃φfG ∈ Z3

≥0

and S̃φfP ∈ IR18 × Z≥0 where only one automata state is
appended to the original MDP states because only one FSA
is constructed for each task. Even though doing so reduces
the dimensionality of the augmented MDP state space, it
increases the size of the resulting FSA (AφfG has 6 nodes
and 17 edges, AφfP has 48 nodes and 486 edges). We show
in the next section that incorporating abstractions in the
TL formula improves learning performance particularly for
large specifications. In these comparison cases, the learning
algorithm is kept fixed changing only the augmented MDP
structure.

It is worth emphasizing that a fair comparison of our work
with other RL algorithms would require running different
algorithms on the same MDP. But given our main focus here
is in the construction of the MDP itself, it would be difficult
to interpret the comparison results of different algorithms
operating in different MDPs (with rewards constructed from
other means).

Directly designing a real valued function that achieves sim-
ilar semantics to the TL specifications provided here is a
challenge in itself. Authors of (Vecerik et al., 2017) have
shaped a reward for a two step clip insertion task and this
reward is already exhibiting a nested min/max structure sim-
ilar to the robustness definition. We expect that if enough
effort is put into reward shaping, one will likely end up with
a function close to the robustness degree for the tasks that
we are looking at.

7. Results And Discussion
Figure 3 shows two sub-policies extracted from the opti-
mal policy learned in the grid environment. Specifically,
Figure 3 (left) shows the policy π?

φhG
(qh,0, q1,0, q2,0, ·, ·).

The FSA in Figure 1(a) indicates that in this configura-
tion, the agent can either visit regions A or B (satisfying
φf1) or visit region C (triggering a transition in Aφf2). How-
ever, the resulting policy only favors visiting regions A and
B. This is because visiting one of these two regions trig-
gers a transition in the high level FSA AφhG which gives a
larger reward than a transition in the lower level ones (Equa-
tion (11) with 0 < w < 1). Figure 1 (right) shows the policy
π?
φhP

(qh,2, q1,f , q2,0, ·, ·). This configuration indicates that

the agent has already satisfied φf1 . Therefore, this sub-policy
leads the agent towards region C which must be visited first

in order to satisfy φf2 .

Figure 3. (left) Sub-policy π?
φh
G
(qh,0, q1,0, q2,0, ·, ·). (right) Sub-

policy π?
φh
P
(qh,2, q1,f , q2,0, ·, ·)

Figure 4 shows two sample trajectories from executing π?
φhG

.
The dot represents the agent at each time-step. Darker color
indicates more recent in time. First we can see that both
trajectories visit regionsC andD in sequence as required by
φf2 . However, visitation of regions A or B depend on which
is closer to the starting position. This is dictated by the
robustness definition of the ∨ operator (i.e. ρ(st:t+k, φ1 ∨
φ2) = max(ρ(st:t+k, φ1), ρ(st:t+k, φ2))).

Figure 4. Sample trajectories from executing the optimal policy.
Darker color indicates more recent in time

Figure 5 illustrates two sample trajectories from executing
π?
φhP

of the particle environment. Figure 5 (left) shows that
the agent is able to take approximately the shortest path
to satisfying the specification. In trying to satisfy φfR1

, the
agent mostly chooses to visit region r11 as oppose to visiting
regions r12 and r13 (Figure 5 (left)) as this is the simpler and
less time consuming path of the two. However, this is not the
case in Figure 5 (right) because visiting r11 would mean a
larger detour. These examples show that our method allows
agent to make logical decisions that would be difficult to
specify otherwise.

Because our method uses a different reward structures from
the comparison method, the discounted return learning curve

Hierarchical Temporal Logic Guided Reinforcement Learning

Figure 5. Sample trajectories in the particle environment. Star
represent initial agent position.

can not be used here for comparison. Instead, we use the
episode length as a measure of task completion and learning
progress. An episode terminates by either reaching the hori-
zon or satisfying the specification. A shorter episode length
indicates faster satisfaction making it a suitable comparison
measure. Figure 6 and Figure 7 show the episode length
distribution as a function of policy updates. Here we denote
our method by hierarchical and the comparison by flat.

Figure 6 shows that for the simple task φhG, our method
exhibits less variance during training but otherwise does not
show a clear advantage over the comparison method. Both
methods are able to reach the optimal policy (the fluctuation
in the learning curve is due to exploration). The reason for
this is likely that since the FSAs in this task are relatively
small, the benefit of abstraction is not apparent. The slightly
slower convergence of our method may be caused by the
added dimensions to the state space.

Figure 6. Learning curve in terms of episode length for the grid
environment. The episode length distribution is calculated from 5
episodes and shown with 1 standard deviation.

Figure 3 shows a clear advantage of our method over the
comparison. By augmenting 3 more dimensions to the
state space, we are able to reduce the max number of au-

tomata states from 48 to 8, and the max number of edges
from 486 to 26. This makes the structure of the reward
for φhP significant simpler than that of φfP . The bene-
fit of reducing the automata size outweighs that of the
added state dimensions and hence the performance improve-
ment. In 50 evaluation trials, the policy obtained with our
method is able to complete the task for 46 trials (92%)
while the comparison is completes only 10 trials (20%). A
video of the learning process of the particle environment
can be accessed at https://www.dropbox.com/s/
csgijbufpu946ts/particle_env.mp4?dl=0.

One potential problem of our method is the explosion of
state dimensions when the task consists of many layers of
hierarchies. It is not clear whether this will considerably
hinder learning as each added dimension (q state) is likely
to take values from a small set of discrete integers. It will
be meaningful to conduct such a study in future.

Figure 7. Learning curve in terms of episode length for the particle
environment. The episode length distribution is calculated from
10 episodes and shown with 1 standard deviation.

8. Conclusions
We present in this paper a technique to specify complex
tasks using temporal logic with multiple levels of abstrac-
tion. The hierarchical specification is translated into a set
of FSAs and a dense step-based reward function that can be
integrated with the original MDP. The resulting hierarchical
FSA augmented MDP possesses both spatial (task level)
and temporal (policy level) abstraction characteristics and
can be trained end-to-end with off-the-shelf reinforcement
learning algorithms. Our method is evaluated on a discrete
grid environment and a continuous particle environment,
and has shown success in generating trajectories that satisfy
the given TL specifications. Future work includes extending
this framework to full TLTL over both MDP states and ac-
tions as well as evaluation on real world robotic household
tasks.

https://www.dropbox.com/s/csgijbufpu946ts/particle_env.mp4?dl=0
https://www.dropbox.com/s/csgijbufpu946ts/particle_env.mp4?dl=0

Hierarchical Temporal Logic Guided Reinforcement Learning

References
Abbeel, Pieter and Ng, Andrew Y. Apprenticeship learning

via inverse reinforcement learning. In ICML, 2004.

Amodei, Dario, Olah, Chris, Steinhardt, Jacob, Christiano,
Paul F., Schulman, John, and Mané, Dan. Concrete prob-
lems in ai safety. CoRR, abs/1606.06565, 2016.

Andreas, Jacob, Klein, Dan, and Levine, Sergey. Modular
multitask reinforcement learning with policy sketches. In
ICML, 2017.

Bengio, Yoshua, Louradour, Jérôme, Collobert, Ronan, and
Weston, Jason. Curriculum learning. In ICML, 2009.

Camacho, Alberto, Chen, Oscar, Sanner, Scott, and McIl-
raith, Sheila A. Decision-making with non-markovian
rewards: From ltl to automata-based reward shaping.
In Proceedings of the Multi-disciplinary Conference on
Reinforcement Learning and Decision Making (RLDM),
pp. 279–283, 2017.

Chevalier-Boisvert, Maxime, Bahdanau, Dzmitry, Lahlou,
Salem, Willems, Lucas, Saharia, Chitwan, Nguyen,
Thien Huu, and Bengio, Yoshua. Babyai: First steps
towards grounded language learning with a human in the
loop. CoRR, abs/1810.08272, 2018.

Christiano, Paul F., Leike, Jan, Brown, Tom B., Martic,
Miljan, Legg, Shane, and Amodei, Dario. Deep rein-
forcement learning from human preferences. In NIPS,
2017.

Christiano, Paul Francis, Abate, Marianna, and Amodei,
Dario. Supervising strong learners by amplifying weak
experts. CoRR, abs/1810.08575, 2018.

Clark, J. and Amodei, D. Faulty reward functions in the
wild, 2016. URL https://blog.openai.com/
faulty-reward-functions.

Dietterich, Thomas G. Hierarchical reinforcement learning
with the maxq value function decomposition. J. Artif.
Intell. Res., 13:227–303, 2000.

Giacomo, Giuseppe De, Iocchi, Luca, Favorito, Marco, and
Patrizi, Fabio. Reinforcement learning for ltlf/ldlf goals.
CoRR, abs/1807.06333, 2018.

Hadfield-Menell, Dylan, Dragan, Anca D., Abbeel, Pieter,
and Russell, Stuart J. Cooperative inverse reinforcement
learning. In NIPS, 2016.

Irving, Geoffrey, Christiano, Paul Francis, and Amodei,
Dario. Ai safety via debate. CoRR, abs/1805.00899,
2018.

Lehman, Joel et al. The surprising creativity of digital
evolution: A collection of anecdotes from the evolution-
ary computation and artificial life research communities.
CoRR, abs/1803.03453, 2018.

Leike, Jan, Krueger, David, Everitt, Tom, Martic, Miljan,
Maini, Vishal, and Legg, Shane. Scalable agent alignment
via reward modeling: a research direction. arXiv preprint
arXiv:1811.07871, 2018.

Li, Xiao, Ma, Yao, and Belta, Calin. Automata guided rein-
forcement learning with demonstrations. arXiv preprint
arXiv:1809.06305, 2018.

Lillicrap, Timothy P., Hunt, Jonathan J., Pritzel, Alexander,
Heess, Nicolas, Erez, Tom, Tassa, Yuval, Silver, David,
and Wierstra, Daan. Continuous control with deep rein-
forcement learning. CoRR, abs/1509.02971, 2015.

Lowe, Ryan, Wu, Yi, Tamar, Aviv, Harb, Jean, Abbeel,
Pieter, and Mordatch, Igor. Multi-agent actor-critic for
mixed cooperative-competitive environments. Neural
Information Processing Systems (NIPS), 2017.

Molnár, Vince and Vörös, András. Synchronous product
automaton generation for controller optimization.

Ng, Andrew Y., Harada, Daishi, and Russell, Stuart J. Policy
invariance under reward transformations: Theory and
application to reward shaping. In ICML, 1999.

Schulman, John, Moritz, Philipp, Levine, Sergey, Jordan,
Michael I., and Abbeel, Pieter. High-dimensional con-
tinuous control using generalized advantage estimation.
CoRR, abs/1506.02438, 2015.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford,
Alec, and Klimov, Oleg. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

Singh, Satinder. Communicating hierarchical neural con-
trollers for learning zero-shot task generalization. 2017.

Sutton, Richard S., Precup, Doina, and Singh, Satinder P.
Between mdps and semi-mdps: A framework for tempo-
ral abstraction in reinforcement learning. Artif. Intell.,
112:181–211, 1999.

van Niekerk, Benjamin, James, Steven, Earle,
Adam Christopher, and Rosman, Benjamin. Will
it blend? composing value functions in reinforcement
learning. CoRR, abs/1807.04439, 2018.

Vasile, C. Github repository, 2017.

Vecerik, Matej, Hester, Todd, Scholz, Jonathan, Wang,
Fumin, Pietquin, Olivier, Piot, Bilal, Heess, Nicolas,

https://blog.openai.com/faulty-reward-functions
https://blog.openai.com/faulty-reward-functions

Hierarchical Temporal Logic Guided Reinforcement Learning

Rothörl, Thomas, Lampe, Thomas, and Riedmiller, Mar-
tin A. Leveraging demonstrations for deep reinforce-
ment learning on robotics problems with sparse rewards.
CoRR, abs/1707.08817, 2017.

Watkins, Christopher John Cornish Hellaby. Learning From
Delayed Rewards. PhD thesis, King’s College, Cam-
bridge, England, 1989.

