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Abstract

This thesis presents a new distributed cooperative localization technique using a second

order sensor fusion method developed for the Special Euclidean group. Uncertainties

in the robot pose, sensor measurements and landmark positions (neighboring robots in

this case) are modeled as Gaussian distributions in exponential coordinates. This proves

to be a better fit for posterior distributions resulting from the motion of nonholonomic

kinematic systems with stochastic noise (compared to standard Gaussians in Cartesian

coordinates). We provide a recursive closed-form solution to the multi-sensor fusion

problem that can be used to incorporate a large number of sensor measurements into

the localization routine and can be implemented in real time. The technique can be

used for nonlinear sensor models without the need for further simplifications given that

the required relative pose and orientation information can be provided, and it is scalable

in that the computational complexity does not increase with the size of the robot team

and increases linearly with the number of measurements taken from nearby robots. The

proposed approach is validated with simulation first conceptually in Matlab then more

realistically in the robotics simulator ROS/Gazebo. It is also compared with one of the

current state of the art methods (distributed EKF) and shows promising results.
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Chapter 1

Introduction

1.1 Introduction to Multi-Robot Systems and Swarm Robotics

The field of Robotics and Automation is witnessing its drastic ascendency in terms of

its significance in industrial and military applications as well as its growing importance

in people’s everyday lives. Multi-robot systems (sometimes also known as multi-agent

systems) is a branch of robotics that deals with the collaboration among teams of ho-

mogenous/heterogenous robots in accomplishing certain tasks.

The authors of [1] presented the development of a group of robot modules that can per-

form tasks collectively and has the ability to rigidly connect to each other for navigation

in complex environments. (for example in traversing a gap that’s wider in length than

any individual module). [2] presented testing of dispersion algorithms that can guide a

swarm to efficiently cover a given space. And [3] showed in algorithms and hardware the

mapping of an environment using multiple robots to reduce the time required to finish

the task compared to a single robot.

Biological swarms (social animals) and their collective behaviors serves as the initial

inspiration of research in swarm robotics. The main advantages of using multiple mod-

ularized robots to complete a certain task is threefold and are listed as follows:

• Scalability - A well designed swarm algorithm should be scalable in that the com-

putational complexity should not increase or increases only a little with the number

of robots in the swarm so that it shouldn’t make a huge difference whether it’s 100
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Chapter1. Introduction

or 1000 robots performing a task. This advantage/requirement is sometimes also

phrased as the algorithm being fully distributed.

• Robustness - A swarm of modularized robot can effectively cope with subsystem

failures (loss of a reasonable number of team members). This advantage is pro-

moted by a high level of redundancy and the absence of a leader.

• Flexibility - The same team of robots can be reconfigured to perform different

tasks and adapt to different environments [4].

The field of swarm robotics can be further subdivided into five categories, namely central-

ized vs decentralized communication, formation and control, collaborative mapping and

localization, collaborative manipulation, collaborative path planning and object avoid-

ance [5]. Each category is in its own an active fields of study. As with the case for single

mobile robots, localization is one of the foremost problems to be solved for multi-robot

systems. Since information can be shared among team members, a robot team has the

potential to perform the task with higher efficiency and fewer resources [6]. Therefore

this thesis focuses on the development of an efficient real-time distributed collaborative

localization technique. The following sections will discuss more about multi-robot lo-

calization and put forth the main contributions of the technique developed, and lastly

provide an outline of the entire thesis.

1.2 Multi-Robot Localization

The path to true autonomy starts with robots knowing where they are in a given

workspace. Such a problem is known as robot localization. According to [7], the lo-

calization problem can be categorized into two subproblems: position tracking (local

localization) which aims to compensate for small dead reckoning errors using sensor

feedback, this approach is local in that the initial pose is assumed known. And global

localization in which the robot ”figures out” its position given no knowledge of its initial

pose. A tremendous amount of effort has been devoted to effectively and efficiently solve

the localization problem and the field has seen major advancements in the establishment

of highly practical and easy to implement algorithms with the EKF (Extended Kalman

Filter) and PF (Particle Filter) based approaches as the most widely accepted solutions

to the problem. However, the majority of existing approaches are tailored to localized

a single robot. The field of multi-robot localization remains relatively fresh and to be

explored[6].
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Chapter1. Introduction

Performing the localization task with multiple robots possess the advantage of informa-

tion sharing. Robots within a team can exchange information with other members so

to increase the accuracy and reduce uncertainty in their own estimate. This advantage

is shown both in simulation and in experiment in [6] by letting two robots explore an

indoor environment both executing their own single robot localization scheme, but the

proposed collaborative fusion algorithm is used when two come into each other’s de-

tection range and results show that such an algorithmic reinforcement has the effect of

significantly reducing the ambiguities existing in the original estimates. A collaborative

architecture as such can effectively reduce the hardware cost of the entire team in that

as long as at least one robot has a good knowledge of its location other team members

can use this information along with relative measurements to infer their own position

and reduce estimation errors.

1.3 Research Objectives and Contributions

Given many of the existing approaches to the multi-robot localization problem consider

only uncertainties in the current robot’s pose estimate and sensor measurement, the goal

of this thesis is to explore cooperative localization in a more generalized setting where

uncertainty in the sources of relative measurements (neighboring robots’ pose estimates)

are also considered. The distributed localization approach proposed in this thesis makes

an effort to providing recursive closed-form expressions for real time cooperative sensor

fusion used for pose updates of robots within a team. This work extends the method

presented in [8] in that [8] considers cooperative localization with only one exact noise-

free measurement (relative to a neighboring robot) whereas the technique proposed

can taken into account any number of relative measurements while also considering

sensor noise. This method is developed under the framework of exponential coordinates

for Lie groups which gives this exotic sounding methodology a down-to-earth benefit:

Gaussian distribution in Cartesian coordinates possesses elliptical probability density

contours and the banana-shaped distribution resulting from incremental motions of a

stochastic differential-kinematic system (i.e., a probabilistic model of mobile robots with

nonholonomic kinematic constraints) is better represented by a Gaussian in exponential

coordinates which produce a more conformable density contour (refer to figure 5.2). This

underlying framework allows the proposed algorithm to tolerate higher errors without

worrying about collapse of the normality assumption as uncertainty grows. Unlike most

existing cooperative localization schemes that consider only uncertainty in the pose
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Chapter1. Introduction

of the robot to be estimated and measurement noise, the presented method has also

taken into account the uncertainty in the pose of nearby robots from which relative

measurements are taken, making it a more realistic and dynamical localization technique.

This approach is second order in its expansion of the Gaussians that describes the pose

and measurement distributions using the Baker-Campbell-Hausdorff (BCH) formula [9],

no simplifications are made regarding the system kinematics, thus preserving the full

nonlinear characteristics of the original system. Lastly, the form of sensor measurement

in this method is kept generic without assuming the type of sensor or any underlying

characteristics given the Gaussian-in-exponential-coordinate model can be applied.

1.4 Outline

The remainder of this thesis is outlined as follows. Chapter 2 introduces in more detail

two most popular classes of localization techniques, their variations and applications

in the multi-robot context and the pros and cons of each. Chapter 3 introduces the

mathematical foundation on which the proposed approach is based, namely the basics of

Matrix Lie Groups and Exponential Mapping. Chapter 4 provides a detailed derivation

of the proposed technique. Chapter 5 describes the experimental setup in simulation.

The Robot Operating System (ROS) is chosen to be the experimental platform for its

extensive community support and a wide range of established tools and libraries. The

simulation platform Gazebo runs as a plugin of ROS and can be conveniently substituted

by appropriately configured hardware, which is yet another reason for the choice of this

control platform. Chapter 6 presents the experimental results along with the discussion

of their significance and Chapter 7 concludes this thesis.
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Chapter 2

Related Research

The problem of cooperative localization has been tackled with a wide variety of ap-

proaches over the years. And similar to single robot localization, a large portion of the

existing algorithms can be consider variations of two main categories. The first family

of algorithms make use of recursive Gaussian filters. Distributed versions of the Kalman

Filter are proposed in [10] [11] to solve the cooperative localization problem. The Ex-

tended Kalman Filter (EKF) is utilized in [12] while also providing analytical expressions

for the upper bound of the estimate uncertainty. In [13] the EKF is also used, but the

algorithm is reinforced with an entropic criterion to select optimal measurements that

reduce the global uncertainty. The advantage of using recursive Bayesian filters to fuse

information lies in they are incremental in nature, which makes them applicable to real

time estimation. Closed-form expressions for state estimation and update also facili-

tate computational speed. However these types of algorithms deal only with Gaussian

noise which may not be the case for some real systems. And EKF linearizes the system

dynamics around the state of estimate which is prone to failure when errors grow.

The second family of algorithms are built upon sampling-based nonparametric filters.

Monte Carlo Localization methods are used in [14] to estimate the pose of each member

robot while using grid cells to describe the entire particle set. A global collaborative

localization algorithm is presented in [6] that also builds upon sample-based Markov

localization. In addition, [15][16][17] have all approached the problem with different

variations of the Particle Filter and have also applied their algorithm in the SLAM

(Simultaneous Localization and Mapping) context. Further experimental validation is

provided in [15] and [17]. Grid-based and sampling-based Markov localization tech-

niques usually address the problem globally and can be improved via carefully designed
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Chapter2. Related Research

resampling processes to counteract localization failures. They can also be used to ac-

commodate non-Gaussian noise models. However like all sampling-based approaches, a

large number of grids/samples are usually needed to acquire reasonable outcomes and

the computational cost grows dramatically with the dimension of the problem. The fol-

lowing subsections present in detail one representative technique from each of the above

categories. While variations and improvements to these algorithms do exist, the core

benefits as well as shortcomings are preserved. A table comparing the two families of

methods is provided at the end of the chapter.

2.1 Multi-Robot Localization Using Distributed Extended

Kalman Filter

This section describes in detail a distributed localization technique based on the Extend

Kalman Filter (EKF) ([11][18][19]). The problem setting is one where a group of robots

are navigating a planar open space and the state vector to be estimated is ~x = [x, y, θ]T .

For the sake of description we assume robot i is the robot to be localized and robots

1, ..., k, ..., n are its n neighbors. At time tk robot i detects robot k and measures their

relative pose. The nonlinear system dynamics for each robot is of form

~x(tk+1) = f(~x(tk), ~u(tk)) (2.1)

where ~x is the state vector to be estimated, ~u is the system input. Here we let the input

to the system be proprioceptive sensor measurements (encoder measured velocities, etc).

The estimation system dynamics is

~̂x(tk+1) = g(~̂x(tk), ~um(tk)) (2.2)

If we assume errors occur in the inputs (i.e. ~u = ~um + ~w where ~w is the process noise

vector) and are zero mean white noises with covariance Σw = E[~w~wT ] and let ~̃x = ~x− ~̂x,

the linearized error-state propagation equation takes the general form

~̃x(tk+1) = Φ(tk+1, tk)~̃x(tk) +G(tk)~w(tk) (2.3)

The algorithm then consists of four steps introduced as follows.
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Prediction

Since initially the system of the multi-robot team is fully decoupled, the propagation of

the state mean and covariance can be done locally by each robot. The estimated system

dynamics is used for the state propagation step

~̂xi(t
−
k+1) = gi(~̂xi(tk), ~uim(tk)) (2.4)

Define the system noise covariance by Qdi = Gi(tk)ΣiwGi(tk)T , the propagation of the

state covariance then follows

Pi(t
−
k+1) = Φi(tk+1, tk)Pi(t

+
k )ΦT

i (tk+1, tk) +Qdi(tk) (2.5)

If no measurement is made, (2.4) and (2.5) can be used recursively to propagate the

state of the system which is also called dead reckoning. And the covariance of the entire

multi-robot system would be a block diagonal matrix with Pis on its diagonal.

Update

Now suppose robot i detects robot k and a relative measurement is made by its extero-

ceptive sensor (laser, sonar, etc)

~zik(tk+1) =


ixk(tk+1)

iyk(tk+1)

iθk(tk+1)

+ ~nik(tk+1) (2.6)

where ~nik is the measurement noise with zero mean and covariance Rik = E[~nik~n
T
ik]. Let

the estimated measurement model be

~̂zik(tk+1) =

CT (θ̂i)

([
x̂k

ŷk

]
−

[
x̂i

ŷi

])
θ̂k − θ̂i

 (2.7)

where C(θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
. Now define the measurement error ~̃z = ~z − ~̂z, the

linearized measurement error model is then given by

7
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~̃zik = −ΓT
i H̃ik~̃x(tk+1) + ~nik(tk+1) (2.8)

where

H̃ik =

[
I2x2 J(p̂k − p̂i)
~01x2 1

]

Γi =

[
C(θ̂i) ~02x1

~01x2 1

]

J =

[
0 −1

1 0

]
p̂i = [x̂i(t

−
k+1) ŷi(t

−
k+1)], θ̂i = θ̂i(t

−
k+1)

(2.9)

Define

Hik = ΓT
ik

[
−H̃ik I3x3 03x3

]
Sik(tk+1) = ΓT

i S̃ikΓi

S̃ik = H̃ikPi(t
−
k+1)H̃T

ik + Pk(t−k+1) + R̃ik

R̃ik = ΓiRikΓT
i

(2.10)

The state update equation for robot i becomes

~̂xi(t
+
k+1) = (I − PiH̃

T
i S̃
−1
ik )~̂xi(t

−
k+1) + PiH̃

T
i S̃
−1
ik (~̂xk(t−k+1)− Γi~zik) (2.11)

For the state covariance update

Pi(t
+
t+1) = Pi(t

−
t+1)− Pi(t

−
t+1)H̃T

ikS̃
−1
ik H̃ikPi(t

−
t+1) (2.12)

2.2 Multi-Robot Monte Carlo Localization

Like all probabilistic localization methods, Monte Carlo Localization (MCL) also repre-

sents the robot positions as a distribution function (also called belief functions). However
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unlike parametric filters (KF, EKF described above), MCL relies on sampling-based rep-

resentations where posterior beliefs are given by a set of weighted random samples called

particles denoted by Si = {si|i = 1, ...,K} where si = (pi, wi) with pi = (xi, yi, θi) be-

ing the states to be estimated and wi > 0 being a positive weighting factor restricting
k∑

i=1
wi = 1 analogous to a discrete probability. Perhaps one of the most well known multi-

robot MCL method is presented by [6]. The core of the method lies in that instead of

maintaining a single belief over all robot poses, a factorial representation approximate

is used to distribute the algorithm local to each robot. The factorial representation

assumes that the distribution of the robot’s belief (denoted by L) is the product of its

N marginals, i,e,

P (L1(t), ..., LN (t)|z(t)) = P (L1(t)|z(t))× ...× P (LN (t)|z(t)) (2.13)

where z(t) represents the measurements may it be interoceptive or exteroceptive sensor

measurements. when z(t) is an odometry measurement or measurement of the environ-

ment, the localization follows that of a particle filter. However when z(t) represents a

detection (here we also assume robot i detects robot k and and z(t) provides the location

of robot i relative to robot k), we have the incremental update equation

Beli(p) = Beli(p)

∫
G
P (Li = p|Lk = p′, z)Belk(p′) dp′ (2.14)

where
∫
GP (Li = p|Lk = p′, z)Belk(p′) dp′ is robot k’s estimate of where robot i is. And

if rm is reverted to provide the location of k relative to i, simple modifications can be

made to (2.14) for robot k to estimate robot i’s position.

To complete the algorithm, a flowchart is provided in figure 2.1 to illustrate the main

steps [6]. The odometry update step correspond to the motion propagation step in the

EKF method where the robot’s velocity motion model is used to propagate it’s belief us-

ing the odometry reading as inputs. pold is the robot’s position estimate before the input

is applied. Also it is important to notice that (2.14) requires the multiplication of two

probability densities functions (pdf) which is not straightforward since the the distribu-

tions are represented by a set of particles and hence difficult to find a correspondence

between particles. [6] approached this problem with by transforming the particle sets

9
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into piecewise constant density functions using density trees (see [20],[21],[22],[23],[24]

for details on density trees) .

Figure 2.1: Multi-Robot Monte Carlo Localization

Upon approximating the density in (2.14) using particles, the resulting sample set is

transformed into a density tree. The density values are multiplied to each particle

(within the constant region defined for that density value) of robot i . these density

values replace the Beli(p) term on the right hand side of (2.14) and results in a updated

posterior distribution for robot i reflecting the detection of robot k according to

Beli(p) = ρtree

∫
G
P (Li = p|Lk = p′, z)Belk(p′) dp′ (2.15)

This chapter ends with a comparison of the two methods introduced namely the dis-

tributed EKF and MCL.

Although just two methods, they represent the two main categories of localization tech-

niques that currently dominates the field. Both possesses their own pros and cons and

the choice of which depend heavily on the type of applications they are desired for and

the two approaches can potentially be combined to yield superior outcomes.
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Table 2.1: Comparison Between Distributed EKF And MCL

Distributed EKF Multi-Robot MCL

Restrictions on
Error Distribution

Requires Gaussian process and
measurement error

Nonparametric particle
representation of posterior

belief, no assumptions
on noise distribution

Global Localization No Yes

State Recovery No
Possible given a well
designed resampling

process

Localization Accuarcy Accurate when error is small
Depends on the number

of particles used

Computational Cost
Small due to the closed

form propagation and update
equations

Depends on the number of particles.
Can increase dramatically with the

dimension of the state space

Ease of Implementation Simple Can be involved

Robustness
Prone to error due to

linearization

Quite resistant to errors given
multiple beliefs are maintained

simultaneously

Process Multiple
Detections Simultaneously

No No

Complexity Relative
To Team Size

Fully distributed. Complexity
independent of team size

Complexity independent of
team size

11



Chapter 3

Mathematical Background for

The Group SE(n) and

Exponential Mapping

3.1 The Special Euclidean Group and Exponential Coor-

dinates

3.1.1 The Special Euclidean Motion Group

The proposed technique is largely based on the notion of groups and its parametrization

so it will be necessary to properly define the concept of groups. According to [9], a

group is defined as a pair (G, ◦) consisting of a set G and a binary operator ◦ such

that operations are closed under the operator ◦, associative under this operator for all

elements of G, meanwhile there also exists an identity element e such that for all elements

g ∈ G, g ◦ e = e ◦ g = g and for each g ∈ G there exist an inverse element g−1 such that

g ◦ g−1 = g−1 ◦ g = e. For engineering applications, the group of most interest is the

Special Euclidean (SE) Group since rigid body motions are elements of the SE group

and can be represented by the set of homogeneous matrices defined as

SE(n) =

{[
R t

0T 1

]∣∣∣∣∣R ∈ SO(n), t ∈ <n

}
(3.1)
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where SO(n) is the Special Orthogonal group representing rotations that can be pre-

sented as n×n rotation matrices and <n is the n dimensional vector space representing

translations. Since we are only interested in rigid body motion, n just takes only two

values particularly n = 2 for planar motion and n = 3 for 6 dimensional space motion.

Going back to the original definition of groups, the Special Euclidean Group is also

a form of the Matrix Lie Group whereby each of its elements is a real-valued matrix

that defines a differentiable manifold and the binary operation is simply the matrix

multiplication.

Now we introduce the concept of Lie Algebra. Again following [9], elements of a matrix

Lie group can be are written as g(t) = eX for X ∈ G where the set G is the matrix Lie

Algebra of G. The Lie Algebra for SE(2) (denoted by se(2)) can be represented by the

linear combination of a set of basis

E
se(2)
1 =


0 0 1

0 0 0

0 0 0

, E
se(2)
2 =


0 0 0

0 0 1

0 0 0

, E
se(2)
3 =


0 −1 0

1 0 0

0 0 0



The exponential coordinate for an element of SE(2) can be defined as xse(2) = [v1, v2, α]T

and under this definition an element of the the Lie algebra se(2) can be written as a

3× 3 matrix

Xse(2) = x̂se(2) =


0 −α v1

α 0 v2

0 0 0

 =

3∑
i=1

E
se(2)
i x

se(2)
i , andXse(2)∨ = xse(2) (3.2)

For the case of SE(3), the basis elements of the Lie algebra se(3) are a set of 4 × 4

matrices defined by

E
se(3)
1 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

, E
se(3)
2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

, E
se(3)
3 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

,
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E
se(3)
4 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

, E
se(3)
5 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

, E
se(3)
6 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

,

The corresponding exponential coordinate for an element of SE(3) is then xse(3) =

[v1, v2, v3, α, β, γ]T and an element of se(3) is

Xse(3) = x̂se(3) =


0 −γ β v1

γ 0 −α v2

−β α 0 v3

0 0 0 0

 =
6∑

i=1

E
se(3)
i x

se(3)
i , andXse(3)∨ = xse(3) (3.3)

It can be observed that taking the matrix exponential of the basis elements result in the

homogeneous matrix of the corresponding motion. As an example

exp(θE
se(3)
1 ) =


1 0 0 θ

0 1 0 0

0 0 1 0

0 0 0 1

 (3.4)

which corresponds to translation in the current x direction by an amount θ. And

exp(θE
se(3)
4 ) =


cos(θ) − sin(θ) 0 0

sin(θ) cos(θ) 0 0

0 0 1 0

0 0 0 1

 (3.5)

which is rotation about the current x axis by θ. As mentioned before, the Special

Euclidean group and its Lie algebra is related by

g =

[
R t

0T 1

]
= exp(X) (3.6)

For SE(2), the explicit relation is

14
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R =

[
cos(α) sin(α)

sin(α) cos(α)

]

t =

[
t1

t2

]
=

[
[v2(cos(α)− 1) + v1 sin(α)]/α

[v1(1− cos(α)) + v2 sin(α)]/α

] (3.7)

For SE(3), first let v = [v1, v2, v3]T , ω = [α, β, γ]T and skew(ω) =


0 −γ β

γ 0 −α
−β α 0

 be

the skew symmetric matrix of vector ω. Thereby the explicit relation between SE(3)

and se(3) is

R = eskew(ω)

t =
(I −R)(ω × v) + ωωTv

‖ω‖2
(3.8)

3.1.2 Adjoint Matrices

The adjoint operator Ad(g) and ad(X) are two important concepts to the derivations

that follow so their definitions as well as relevant properties will be introduced in this

section. To define the adjoints, we need to first define the inner product and Lie bracket

operations for Lie algebras. According to [9], an inner product between arbitrary ele-

ments of the Lie algebra Y =
∑

i yiEi and Z =
∑

i ziEi can be defined such that

(Y,Z) =

n∑
i

yizi (3.9)

given (Ei, Ej) = δij where δij is the Dirac Delta Function. In addition, the Lie Bracket

of Y,Z is defined as

[Y,Z] = Y Z − ZY (3.10)

With the above definitions in place, for X,Y ∈ G and g ∈ G, the adjoint operators are

then

15
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Ad(g)X =
d

dt
(g ◦ etX ◦ g−1)|t=0 =

d

dt
exp(tgXg−1)|t=0 = gXg−1

ad(X)Y =
d

dt
(Ad(etX)Y )|t=0

(3.11)

Since the adjoint operators are both linear operators, they can both be written as ma-

trices that represent linear mapping. We call these matrices adjoint matrices and define

them as (in component form)

[Ad(g)]ij = (Ei, Ad(g)Ej) = (Ei, gEjg
−1)

[ad(X)]ij = (Ei, ad(X)Ej) = (Ei, [X,Ej ])
(3.12)

And their matrix form definition is

[Ad(g)] = [(gE1g
−1)∨, ..., (gEng

−1)∨]

[ad(X)] = [[X,E1]∨, ..., [X,En]∨]
(3.13)

Some important properties of the adjoint matrices that are used in the following calcu-

lations are listed as follow:

1. Ad(exp(X)) = exp(ad(X))

2. ad(X)X∨ = 0

3. ad(X)Y = XY − Y X = [X,Y ]

4. ad(X)Y ∨ = [X,Y ]∨

5. ad([X,Y ]) = ad(X)ad(Y )− ad(Y )ad(X)

6. ad(X)Y ∨ = −ad(Y )X∨

7. Ad(g1)Ad(g2)X = g1(g2Xg
−1
2 )g−1

1 = (g1g2)X(g1g2)−1 = Ad(g1g2)X

8. log∨(g ◦ eX ◦ g−1) = Ad(g) log∨(eX)
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For SE(2), the explicit form of the adjoint matrices are

Ad(g) =

[
R Mt

0T 1

]
∈ <3×3, ad(g) =

[
−αM Mv

0T 0

]
∈ <3×3 (3.14)

where M =

[
0 1

−1 0

]
, R and t defined by (3.6). (v, α) = (v1, v2.α) are the exponential

coordinates of SE(2).

For SE(3) this becomes

Ad(g) =

[
0 R

R TR

]
∈ <6×6, ad(g) =

[
0 Ω

Ω V

]
∈ <6×6 (3.15)

where v = (v1, v2, v3)T ,ω = (α, β, γ)T and V = v̂,Ω = ω̂, T = t̂.

3.1.3 The Baker-Campbell-Hausdorff Formula

The Baker-Campbell-Hausdorf (BCH) formula [9] serves as the core of the second order

estimation of Gaussian convolutions (described in more detail in the next section). In

essence, the BCH formula establishes a relationship between the Lie Bracket (defined in

(3.10)) and the matrix exponential. Let X,Y ∈ G and define Z(X,Y ) = log(eXeY ), the

BCH formula then takes the form

Z(X,Y ) = X+Y+
1

2
[X,Y ]+

1

12
([X, [X,Y ]]+[Y, [Y,X]])+

1

48
([Y, [X, [Y,X]]]+[X, [Y, [Y,X]]])+· · ·

(3.16)

This can be verified by expanding eX , eY using matrix exponential Taylor series eX =∑∞
k=0

Xk

k! and substitute into the Taylor series for matrix logarithm

log(eXeY ) = log(I + (eXeY − I)) =
∞∑
k=1

(−1)k+1 (eXeY − I)k

k
(3.17)

Applying the ∨ operator to equation (3.16) results in
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z =x + y +
1

2
ad(X)y +

1

12
(ad(X)ad(X)y + ad(Y )ad(Y )x)

+
1

48
(ad(Y )ad(X)ad(Y )x + ad(X)ad(Y )ad(Y )x) + · · ·

(3.18)

Equations (3.16) and (3.18) are powerful tools that can be used in the group context

similar to the Taylor Series and produce useful linearized or quadratic estimation results.

3.2 Gaussians on SE(n) and Second Order Convolution

Theory

A Gaussian on the SE(n) is defined by

f(g;µ,Σ) =
1

C(Σ)
exp

{
−1

2
[log∨(µ−1g)]TΣ−1[log∨(µ−1g)]

}
(3.19)

where µ, g ∈ SE(n), C(Σ) ≈ (2π)
d
2 ‖det(Σ)‖

1
2 (d is the degree of freedom of the space

defined by SE(n) where d = 6 for SE(3) and d = 3 for SE(2)) is the normalizing factor

when ‖Σ‖ is small.

For a domain of integration G = SE(n), the mean of the above Gaussian is defined by

∫
G

log∨(µ−1g)f(g) dg (3.20)

and the covariance given by

Σ =

∫
G
[log∨(µ−1g)][log∨(µ−1g)]T f(g) dg (3.21)

Given two Gaussians f1(g) = f(g;µ1,Σ1) and f2(g) = f(g;µ2,Σ2) in the form of (3.19),

their convolution is defined as
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(f1 ∗ f2)(g) =

∫
G
f1(h)f2(h−1g) dh

=

∫
G
ρ1(µ−1

1 h)ρ2(µ−1
2 h−1g) dh

With ρi(g) = f(g; e,Σi) being Gaussian centered at the identity. It is proven (refer to

[25]) that the convolution (f1 ∗ f2)(g) results (to the second order) in a Gaussian with

mean

µ1∗2 = µ1µ2 (3.22)

and covariance

Σ1∗2 = A+B + F (A,B) (3.23)

with the terms A, B and F defined by

A = Ad(µ−1
2 )Σ1Ad(µ−1

2 )T (3.24)

B = Σ2 (3.25)

where

F (A,B) =
1

4

d∑
i,j=1

ad(Ei)Bad(Ej)
TAij

+
1

12

[

d∑
i,j=1

A
′′
ij ]B +BT [

d∑
i,j=1

A
′′
ij ]

T


+

1

12

[

d∑
i,j=1

B
′′
ij ]A+AT [

d∑
i,j=1

B
′′
ij ]

T


(3.26)

where
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A
′′
ij = ad(Ei)ad(Ej)Aij (3.27)

B
′′
ij = ad(Ei)ad(Ej)Bij (3.28)

The above results are usually used for SE(2) and SE(3) where the basis elements Ei as

well as Ad and ad matrices as defined in the previous section.
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Chapter 4

Derivation of Second Order

Bayesian Sensor Fusion on the SE

Group

This chapter presents a detailed derivation of proposed technique. Again the tech-

nique focuses on fusing the relative measurements of neighboring robots and their pose

information to reduce the estimation uncertainty of the current robot. A probabilistic

approach is adapted where uncertainties in the robot positions and sensor measurements

are modeled by Gaussians. In addition, the technique is developed under exponential

coordinates for the reason that the motion of a stochastic system with differential con-

straints is modeled more accurately with Gaussians in exponential coordinates than that

in Cartesian coordinates. The theory will first be developed for a system of two robots

(which builds on [8] by taking sensor noise into consideration) and be extended to the

multi-robot scenario.

4.1 Localization for A Robot Pair

The problem is given by two mobile robots i and j moving in the field whose position

priors are provided by two Gaussians f(a−1
i gi;µi,Σi) and f(a−1

j gj ;µj ,Σj). For the pla-

nar case, ai, aj ∈ SE(2) are the known initial positions of the robots relative to the

world frame at t = 0. At time t, µi, µj ∈ SE(2) and Σi,Σj ∈ R3×3 are the means

(defined relative to the initial frames ai, aj)and covariances obtained from a previous
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Chapter 4. Derivation of Second Order Bayesian Sensor Fusion on the SE Group

prediction step which we’ll also assume to be known. In addition, a sensor measurement

of robot j relative to i is also obtained at time t and is given by the homogeneous matrix

mij ∈ SE(2). Since we assume the sensor has Gaussian noise, its distribution is then

characterized by a Gaussian of the form Mij(gi, gj) = f(gj ; gimij ,Σm) which says that

according to the sensor, the position of robot j with respective to robot i has a mean of

gimij and covariance of Σm.

The goal is then to calculate a posterior for the position of robot i using the sensor mea-

surement to update the its prior. Because the sensor provides a relative measurement,

we first formulate the joint prior of robot i and j making the assumption that the priors

are independent of each other, giving

pij(gi, gj) = f(a−1
i gi;µi; Σi)f(a−1

j gj ;µj ; Σj). (4.1)

Then according to Bayes’ Theorem, the joint posterior is given by

pij = η1pijMij (4.2)

where η1 is a constant normalizing factor. Similar normalizing factors result in all fusion

processes that follow and will be denoted by ηi. To save space in the derivations, we

will denote ρi(µ
−1
i gi) = f(gi;µi; Σi) and the rest follows where ρi(g) is a Gaussian with

mean at the identity. The marginal distribution of the joint posterior for robot i is then

pi(gi) = f(gi;µi,Σi)

= η2

∫
G
pij(gi, gj)Mij(gi, gj) dgj

= η2

∫
G
ρi(µ

−1
i a−1

i gi)ρj(µ
−1
j a−1

j gj)ρm(m−1
ij g
−1
i gj) dgj

= η2ρi(µ
−1
i a−1

i gi)

∫
G
ρj(µ

−1
j a−1

j gj)ρm(m−1
ij g
−1
i gj) dgj

(4.3)
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The goal is to find closed-form expressions for µi and Σi. Since ρm is symmetric around

the mean, we have ρm(m−1
ij g
−1
i gj) = ρm(g−1

j gimij). Letting g′ = gimij , (4.3) becomes

pi(gi) = η2ρi(µ
−1
i a−1

i gi)

∫
G
ρj(µ

−1
j a−1

j gj)ρm(g−1
j gimij) dgj

= η2ρi(µ
−1
i a−1

i gi)

∫
G
ρj(µ

−1
j a−1

j gj)ρm(e−1g−1
j g′) dgj

(4.4)

with e ∈ SE(2) been the identity element of SE(2). According to the definition of

convolution in Chapter 3, the integral in (4.4) defines a convolution (f1 ∗ f2)(g′) where

f1(g′) = f(g′; ajµj ,Σj) and f2(g′) = f(g′; e,Σm). Let f1∗2(g′;µ1∗2,Σ1∗2) = (f1 ∗ f2)(g′),

then (3.22)-(3.28) can be used to calculate the closed-form expressions of µ1∗2 (which

equals to ajµj) and Σ1∗2. With the integral taken care of, equation (4.4) becomes

pi(gi) = f(gi;µi,Σi)

= η2f(µ−1
i a−1

i gi; e,Σi)f(gimij ; ajµj ,Σ1∗2)
(4.5)

For a posterior of robot i formulated in the form of (4.5), the fusion technique developed

in [8] can be used to derive the closed-form expressions for µi and Σi.

4.2 Localization for Multi-Robot Team

Now we are ready to extend the technique to multi-robot localization. Similar to the

previous subsection, the posterior of robot i is what we are trying to estimate, but

instead of taking measurement from a single neighboring robot, multiple measurements

are taken from however many neighboring robots that are in the sensing range (for

derivation purposes we label the neighboring robots as 1, 2, ..., n). Following a similar

approach we have the joint prior

pi,1,...,n = f(a−1
i gi;µi; Σi)f(a−1

1 g1;µ1; Σ1)...f(a−1
n gn;µn; Σn)

= ρi(µ
−1
i a−1

i gi)ρ1(µ−1
1 a−1

1 g1)...ρn(µ−1
n a−1

n gn)
(4.6)
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Let Min = f(gn; gimin,Σin) be the distribution of the sensor measurement of robot n

relative to robot i and assume independence among all the measurements, we have joint

measurement distribution

Mi,1,...,n = Mi1Mi2...Min (4.7)

To further save space, we will write in short ρi = ρi(µ
−1
i a−1

i gi) as the position priors and

ρin = ρin(m−1
in g
−1
i gn) = Min as the measurement distributions. We will further define

g′in = gimin. The posterior for robot i is then

pi(gi) = f(gi;µi,Σi)

= η3

∫
G

∫
G
...

∫
G
pi,1,...,nMi,1,...,n dg1 dg2...dgn

= η3ρi

(∫
G
ρ1ρi1 dg1

)(∫
G
ρ2ρi2 dg2

)
...

(∫
G
ρnρin dgn

) (4.8)

Let fn(g′in) = f(g′in; anµn,Σn) and fin(g′in) = f(g′in; e,Σin), then (4.8) becomes

pi(gi) = f(gi;µi,Σi)

= η3ρi(µ
−1
i a−1

i gi)(f1 ∗ fi1)(g′i1)(f2 ∗ fi2)(g′i2)...(fn ∗ fin)(g′in)
(4.9)

Calculating the convolutions using equations (3.22)-(3.28), we finally arrive at

pi(gi) = f(gi;µi,Σi)

= η3f(µ−1
i a−1

i gi; e,Σi)f(gimi1; a1µ1,Σ1∗i1)× ...

× f(gimin; anµn,Σn∗in)

(4.10)

An extension of the method provided by [8] (which fuses only one measurement) gives

the equations to calculate µi and Σi, and is presented as follows:

For neighboring robots 1, ..., k, ...., n

1. Define qk = mikµ
−1
k a−1

k aiµi
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2. Define exp(x̂k) = qk.

3. Define Γk = (I + 1
2ad(x̂k))

4. Define Si = ΓT
i Σ−1

i Γi

5. Define Sk = ΓT
mAd

−T (mik)Σ−1
k∗ikAd

−1(mik)Γk

6. S
′
= Si +

n∑
k=1

Sk

7. x′ = S̄′−1
n∑

k=1

Skxk

With the above definitions, the posterior distribution for robot i can be calculated by

Σi = Γ̄′S̄′−1Γ̄′T

µi = µi exp(−ˆ̄x′)
(4.11)

with the operator ∧ and ∨ defined in Chapter 3.

4.3 A Complete Distributed Localization Algorithm Using

Bayesian Filter In Exponential Coordinates

The fusion technique introduced above defines the state update step for the proposed

localization method. However like all Bayesian Filters a complete recursive filter for

state estimation consists of a state prediction step as well as a state update step. This

section serves to provide the proposed algorithm in such a form.

Similar to the above setting, suppose at time tk robot i is the robot to be localized,

robots 1, ..., k, ..., n are its n neighbors. Their means are µi(tk), µk(tk) and covariances

Σi(tk),Σk(tk) respectively. Let the stochastic differential equation (SDE) governing the

motion of the robots be of the form

(g−1ġ)∨dt = hdt+Hdw (4.12)

When g ≈ I and for a sampling time ∆t a constant command u is given to the system

resulting in motion of the system from tk to tk+1, the distributed localization scheme that

estimates the location of robot i at time tk+1 follows two steps (letting ∆t = tk+1 − tk).
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Prediction

µi(∆t) = exp(

∫ ∆t

0
ĥi dτ)

Σi(∆t) =

∫ ∆t

0
Ad(µ−1

i (τ))HiH
T
i Ad

T (µ−1
i (τ)) dτ

µi(t
−
k+1) = µi(tk) ◦ µi(∆t)

Σi(t
−
k+1) = Ai(tk) +Bi(tk) + F (Ai(tk), Bi(tk))

(4.13)

where

Ai(tk) = Ad(µi(∆t)
−1)Σi(t

+
k )Ad(µi(∆t)

−1)T

Bi(tk) = Σi(∆t)

Ai(tk)
′′
ij = ad(Ei)ad(Ej)Ai(tk)ij

Bi(tk)
′′
ij = ad(Ei)ad(Ej)Bi(tk)ij

(4.14)

Fi(Ai(tk), Bi(tk)) =
1

4

d∑
i,j=1

ad(Ei)Bi(tk)ad(Ej)
TAi(tk)ij

+
1

12

[
d∑

i,j=1

Ai(tk)
′′
ij ]Bi(t) +Bi(t)

T [
d∑

i,j=1

Ai(t)
′′
ij ]

T


+

1

12

[
d∑

i,j=1

Bi(tk)
′′
ij ]Ai(tk) +Ai(tk)T [

d∑
i,j=1

Bi(tk)
′′
ij ]

T


(4.15)

In the above equations, µi(∆t)andΣi(∆t) defines the incremental distribution resulting

solely from the input given in the ∆t time frame which location is given with respective to

µi(tk) not the fixed world frame. In order to take into account the uncertainties already

present at time t given by Σi(tk), the distribution at time tk is convolved with the incre-

mental distribution resulting in the predicted distribution given by µi(t
−
k+1)−,Σi(t

−
k+1).

Update
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Now to incorporate the relative measurements, for each of the neighboring robots 1, ..., k, ..., n,

obtain the measurement distribution mik(t),Σik(t), then

Aik(tk) = Ad(mik(tk)−1)Σk(tk)Ad(mik(tk)−1)T

Bik(tk) = Σik(tk)

Aik(tk)
′′
ij = ad(Ei)ad(Ej)Aik(tk)ij

Bik(tk)
′′
ij = ad(Ei)ad(Ej)Bik(tk)ij

(4.16)

Fik(Aik(tk), Bik(tk)) =
1

4

d∑
i,j=1

ad(Ei)Bi(tk)ad(Ej)
TAik(tk)ij

+
1

12

[

d∑
i,j=1

Aik(tk)
′′
ij ]Bik(tk) +Bik(tk)T [

d∑
i,j=1

Aik(tk)
′′
ij ]

T


+

1

12

[
d∑

i,j=1

Bik(tk)
′′
ij ]Aik(tk) +Aik(tk)T [

d∑
i,j=1

Bik(tk)
′′
ij ]

T


(4.17)

Σk∗ik(t(tk)) = Aik(tk) +Bik(tk) + F (Aik(tk), Bik(tk)) (4.18)

1. Define qk(tk) = mik(tk)µk(tk)−1a−1
k aiµi(t

−
k+1)

2. Define exp(x̂k(tk)) = qk(tk).

3. Define Γk(tk) = (I + 1
2ad(x̂k(tk)))

4. Define Si(tk) = Γi(tk)T [Σi(t
−
k+1)]−1Γi(tk)

5. Define Sk(tk) = Γm(tk)TAd−T (mik(tk))Σk∗ik(tk)−1Ad−1(mik(tk))Γk(tk)

6. S
′
(tk) = Si(tk) +

n∑
k=1

Sk(tk)

7. x′(tk) = S̄′(tk)−1
n∑

k=1

Sk(tk)xk(tk)

Σi(t
+
k+1) = Γ̄′(tk)S̄′(tk)−1Γ̄′(t)tk

µi(t
+
k+1) = µi(t

−
k+1) exp(−ˆ̄x′(tk))

(4.19)
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Chapter 5

Simulation And Discussions

A simulation experiment is setup to verify the proposed method. The simulation comes

in two stages, first a Matlab simulation is used to provide a proof-of-concept and initial

state validation. Then a more sophisticated simulation is implemented in the Robot

Operating System/Gazebo framework where a 3D simulated world is powered by the

Open Dynamics Engine(ODE) and various sensor models that generates realistic sen-

sor feedbacks and plausible interactions between robots. The following sections serves

to introduction details on the experimental setups as well as provide results from the

simulation and discussions.

5.1 Matlab Simulation And Results

This section provides a verification for the proposed technique in a Matlab simulated

environment. A team of two-wheeled differential drive robots are moving in the field.

The given inputs are such that all robots move along a straight line or a circular arc.

However, due to the stochastic nature of the systems, errors accumulate over time such

that odometry or dynamics alone is insufficient in estimating the robot poses. The re-

sults from the previous sections can therefore be used to update the robots’ knowledge

of their poses with the help of measuring their positions relative to neighboring robots.

Figure(5.1) depicts a simple model of the two-wheeled differential drive robot which is

very useful in modeling segway-like mobile bases and various multi-robot experimental

28



Chapter 5. Simuation And Discussions

Figure 5.1: Simple model for a two-wheeled differential drive mobile system

platforms (E-pucks, iRobot create, Khepera, etc). According to [8], the kinematics of

such a mobile robot can be characterized by the stochastic differential equation

(g−1ġ)∨dt =


r
2(ω1 + ω2)

0
r
2(ω1 − ω2)

 dt+
√
D


r
2

r
2

0 0
r
l −

r
l


[
dw1

dw2

]
(5.1)

where g ∈ SE(2) is the homogenous matrix representing the pose of the robot, r is

the wheel radius, l is the axle length, ω1, ω2 are the wheel angular velocities, dwi are

unit strength Wiener processes and D is a noise coefficient. This stochastic differential

system can be simulated using the the Euler-Maruyama Method described in [26]. (5.1)

can be written in short as

(g−1ġ)∨dt = hdt+ Hdw (5.2)

when g is close to the identity, given an input pair [ω1, ω2]T , the mean and covariance

of system (5.1) can be estimated by

µ(t) = exp

(∫ t

0
ĥdτ

)
(5.3)
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Σ(t) =

∫ t

0
Ad(µ−1(τ))HHTAdT (µ−1(τ)) dτ (5.4)

For simple motions like straight-line motion (ω1 = ω2) equations (5.3)(5.4) can be eval-

uated analytically as

µ(t)st =


1 0 rωt

0 1 0

0 0 1

 (5.5)

Σ(t)st =


1
2Dr

2t 0 0

0 2Dω2r4t3

3l2
Dωr3t2

l2

0 Dωr3t2

l2
2Dr2t
l2

 (5.6)

The same can be done with circular motion of constant curvature

µ(t)cir =


cos(α̇t) − sin(α̇t) a sin(α̇t)

sin(α̇t) cos(α̇t) a(1− cos(α̇t))

0 0 1

 (5.7)

Σ(t)cir =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (5.8)

where

σ11 =
c

8
[(4a2 + l2)(2α̇t+ sin(2α̇t)) + 16a2(α̇t− sin(2α̇t))]

σ12 = σ21 =
−c
2

[4a2(−1 + cos(2α̇t)) + l2] sin(α̇t/2)2

σ13 = σ31 = 2ca(α̇t− sin(2α̇t))

σ23 = σ32 = −2ca(−1 + cos(α̇t))

σ33 = 2cα̇

c =
Dr2

l2α̇

(5.9)
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With the pose priors calculated with (5.5)-(5.8), equations (4.16)-(4.19) are then ap-

plied with sensor measurements to update the priors. For arbitrary inputs (ω1, ω2) an

approximation will be applied to (5.3)(5.4) which will be discussed in the next section.

This example simulates localization of a robot team in straight and circular motion.

In the set-up of this simulation, the model based parameters are set as r = 0.033, l =

0.2. The simulation parameters for straight-line motion are D = 5, v = 0.5, T = 1.3,

ω1 = ω2 = v
r and T = 2, ω1 = 26.166, ω2 = 21.408 (for circular motion). The explicit

expressions of (24)(25) for these types of motion can be found in [8]. The true robot

motions (equation (1.5)) are simulated 500 times using the Euler-Maruyama Method [26]

and the end position of each trial is plotted in the following figures. It can be observed

that the posterior such a stochastic differential system (SDE) results in a banana shaped

distribution as is also discussed in [7].

In this simulation, all four robots are given the command to travel in a straight line for

1.3 seconds at 0.5 m/s or along an arc of constant curvature of 1m at 45 deg/s for 1

second. The blue dashed lines in the figures represent the desired path of travel with

the blue points at the two ends representing initial to final position. However due to

process noise each robot will eventually end up somewhere near the desired goal and our

objective is to estimate their true position along with a quantification of our confidence

of this estimate. Specifically for this example, the true pose of the middle robot (cyan

colored) is what we’re trying to estimate which we’ll call robot i, while the neighboring

robots (yellow) are members of this team where relative measurements are obtained

from. Among all the sampled end positions, one position for each robot is chosen as

the true end pose (red point) and this is used to generate the mean of the measurement

distribution min.

As the first step, the prior mean and covariance of robot i is calculated using equations

(5.5)-(5.9) and plotted in figure 5.2 and 5.3, the resultant prediction aligns perfectly with

the desire path (blue dash line), and the error ”ellipse” marginalized over the heading

angle is also plotted from the calculated covariance (magenta loop). Since this error

”ellipse” is a contour of the resultant distribution, It can be observed that a Gaussian

distribution under exponential coordinates is a much better fit for characterizing the

uncertainties in an SDE of this kind than that under Cartesian coordinates. It is obvious

that this prediction gives the same resultant distribution regardless of the true position

and is only effected by the system dynamics and input commands. Therefore the next

step is to update this prediction with measurements relative to neighboring robots.
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Figure 5.2: Localization with only the prediction model (straight-line Motion)

Figure 5.3: Localization with only the prediction model (Circular Motion)
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It is assumed that robot i can exchange information with its neighbor when they come

into its sensing range, which means when a relative measurement is taken of neighbor

j relative to robot i, the belief (mean and covariance in this case) that j holds for its

current position can be communicated to i so that i can make use of this information in

its localization process. In this example, this belief (µj ,Σj) for each neighboring robot

j is taken to be the pose prediction calculated from (5.5)(5.6) but in reality this can

very well be the posterior from their own localization results. The covariance of the

measurement distribution is chosen to be

Σm =


0.01 0.02 0.001

0.02 0.25 0.015

0.002 0.0025 0.15



Figure 5.4: Pose update after sensor measurement and fusion (straight-line Motion)

Figure 5.4 and 5.5 shows the updated posterior of robot i calculated from fusing the

relative measurements taken from its three neighbors. The result indicates a more

accurate position mean (black dot) and a shrinked error ”ellipse” representing higher

confidence in the estimate. Since this is a distributed localization technique aimed to

be implemented on the embedded processor of each individual robot, the procedure is

demonstrated only for one robot and the same goes for all other.
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Figure 5.5: Pose update after sensor measurement and fusion (circular Motion)

In addition, it is tempting to figure out how the accuracy of the calculated posterior is

related to the number of neighbor robot that sensor measurements can be taken from.

Figure 5.6 an 5.7 shows a simulated scenario used to study this relationship. In this

study, the localization process is implement for robot i first with measurement taken

only from neighbor 1, then from neighbor 1 and 2 and so on. Each time the localization

process is repeated 60 times and the deviation is defined as

deviation =
‖xtrue − xestimate‖2

‖xtrue‖2
(5.10)

where xestimate = µ̄i is the mean of the updated robot position.

Table 5.1: Numerical Results for Correlation Study (Straight-line Motion)

Num. of Measurements 1 2 3 4 5 6

Mean Sampled Deviation 0.3264 0.2823 0.2193 0.1926 0.1985 0.1798

Frobenius norm of Sample Covariance 0.095 0.1554 0.2027 0.2413 0.2721 0.2982

Figure 5.8 and 5.9 shows boxplots of the deviations defined by (5.10) and the mean of

sampled deviations along with the Frobenius norm of the average covariance matrices

are tabulated in table 5.1 and 5.2. It is observed that as the number of measurements
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Figure 5.6: Simulation setup for the study of relationship between localization accu-
racy and number of measurements taken (straight-line motion)

Table 5.2: Numerical Results for Correlation Study (Circular Motion)

Num. of Measurements 1 2 3 4 5 6

Mean Sampled Deviation 0.2234 0.1585 0.1606 0.1520 0.1697 0.1461

Frobenius norm of Sample Covariance 0.2577 0.4197 0.5457 0.6648 0.7561 0.8371

incorporated in the localization scheme increase, the the accuracy of the resultant pose

estimation increase, however this increase in accuracy plateaus after round three mea-

surements. Due to the higher extent of diffusion in circular motion, there is a larger

probability that the true position ends up far away from the predicted one which to a

certain degree violates the prerequisite for the BCH expansion resulting in higher mag-

nitude of the covariance matrix and fluctuation in the sampled mean deviation. Also the

magnitude of the updated covariance increases with the number of measurements used

as a result of the additive effect of the uncertainties in the sensor measurement as well as

that in the beliefs of neighboring robots. Therefore there is tradeoff between accuracy,

confidence and computational cost. This finding on a level tells us that there may exist

an optimal number of measurements that can be used to achieve the best results which

can be part of the possible future work.
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Figure 5.7: Simulation setup for the study of relationship between localization accu-
racy and number of measurements taken (circular motion)

5.2 Simulation on ROS/Gazebo

In comparison to Matlab, ROS/Gazebo provides a more realistic framework for robotic

simulation. Figure below briefly illustrates the relationship between ROS and Gazebo

As can be observed from the figure, ROS serves as the interface that connects users to

the application frontend. And Gazebo is the simulation backend to ROS that provides

models of the physical world as well as the device of interest. Typically ROS can

not tell the difference between the real world and the simulated world as long as both

provide the necessary information that ROS requires for its calculation. Therefore with a

carefully constructed simulation, the user’s control code can be migrated with little to no

modification to the real robot which establishes the main advantage of this framework.

The following subsections are dedicated to present the simulation setup and results of

the proposed localization technique.
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Figure 5.8: Boxplot for Correlation study (pictures/straight-line Motion)

Figure 5.9: Boxplot for Correlation study (circular Motion)
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Figure 5.10: ROS Gazebo Relationship

5.2.1 Simulation Setup

The experiment simulates two two-wheel mobile bases each equipped with joint ef-

fort controllers, joint velocity encoder and a Hokuyo laser sensor (as shown in figure

5.11 below). The input joint efforts are controlled through a PID controller with

kp = 100, ki = 0.01, kd = 10 and updated at 15 hz. The Hokuyo laser updates its

measurements at 40 hz with a maximum detection range of 1.5 m (0.01 m resolution)

and −π to π (1 degree resolution). The measurement noise is assumed to be normally

distributed with zero mean and variable variances. The variance of the measurement

noise will be adjusted to validate the performance of the proposed method (results shown

in the next section).

Since the proposed method is fully distributed, the localizer along with the motion

planner can be designed so that the same piece of code can be attached to any robot

with no further adjustments necessary. A schematic of the simulation system is pro-

vide in figure 5.12 below. It can be observed from the schematic that the localizer

constantly broadcasts it’s estimate of pose and covariance so other robots can use this

information alongside the relative measurement to update their own estimates. When

the laser senses that another team member is within detection range, it provides its host
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Figure 5.11: Robots In the Simulated World

robot with the necessary measurements (position and orientation of neighbor in the host

robot’s local frame), in addition the host robot ”asks” the sensed neighbor for its current

estimate of its pose and covariance. The localizer then uses this information to update

the robot’s location. Figure 5.13 shows the information flow of the algorithm provided

by ROS. mrl1 and mrl2 represent the two robots and their embedded controllers, /m-

rl/robot state publisher is the model for joint encoders that provide the joint velocities.

/mrlPos represents the global feedback system that provides the ground truth for the

pose of the robot. /mrl control is the interface that supports communication between

the controller/localizer and the simulation world.

Earlier in this chapter we showed that equations (5.3)(5.3) can be calculated in close-

form for straight-line and circular motion ((5.4)-(5.9)). However in order to perform this

simulation continuously, we need a set propagation equations that takes arbitrary input

(ω1, ω2) and produce the mean and covariance that represents the system’s incremental

motion under this set of constant inputs for the defined time interval. Suppose system

(5.1) travels from tk to tk+1 under inputs (ω1, ω2).since the proposed localization tech-

nique is of second order, we approximated the matrix exponential in (5.3) to the second

order
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Figure 5.12: Algorithm Schematic

µ(∆t) = exp(

∫ ∆t

0
ĥdτ)

= exp




0 − r
2(ω1 − ω2)∆t r

2(ω1 + ω2)∆t
r
2(ω1 − ω2)∆t 0 0

0 0 0




≈ I +


0 − r

2(ω1 − ω2)∆t r
2(ω1 + ω2)∆t

r
2(ω1 − ω2)∆t 0 0

0 0 0



+
1

2


0 − r

2(ω1 − ω2)∆t r
2(ω1 + ω2)∆t

r
2(ω1 − ω2)∆t 0 0

0 0 0


2

(5.11)

With the expression of µ(∆t) given, the integrand of (5.4) can also be written in close-

form, let f(t) = Ad(µ−1(t))HHTAdT (µ−1)(t), (5.4) can be approximate by the 3/8

Simpson’s rule
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Figure 5.13: Algorithm Information Flow

Σ(∆t) =

∫ ∆t

0
f(τ) dτ

≈ ∆t

8
[f(0) + 3f(

∆t

3
) + 3f(

2∆t

3
) + f(∆t)]

(5.12)

replace the first two equations in (4.13) with (5.11)(5.12), the proposed localization

method can then be implemented continuously. Note that since the integral in (5.3) can

be evaluated analytically, one can also use the matrix exponential function that comes

with the programming language of choice to calculate µ(∆t) for higher accuracy. It is

expected that the result will not deviate much from the second order approximation for

small ∆t.

In addition to simulating the technique presented, since the Distributed EKF method

discussed in chapter 2([11]) is very close in nature with the proposed method (both
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incremental local distributed localization techniques that require Gaussian noise distri-

butions), it is also tested in the same simulation framework serving as a comparison.

This comparison method is implement to the extent that it uses the same set of inputs

to the localizer as the proposed method in order to pose a fair comparison. A general

planar dynamics equation is used as the state propagation equation (2.4) given by


x̂(tk+1)

ŷ(tk+1)

θ̂(tk+1)

 =


x̂(tk)

ŷ(t)

θ̂(tk)

+


Vm cos(θ(tk))

Vm sin(θ(tk))

Ωm

∆t (5.13)

where (Vm,Ωm) are the linear and angular velocities of the robot provided by the odom-

etry readings. Since the robot used has only wheel joint encoders, this set of inputs are

transformed to the encoder readings by

Vm =
ω1 + ω2

2
r

Ωm =
ω1 − ω2

l
r

(5.14)

After linearization, the state evolution matrix in (2.3) becomes

Φ(tk+1, tk) =


1 0 −Vm∆t sin(θ̂k)

0 1 Vm∆t cos(θ̂k)

0 0 1

 (5.15)

and the error matrix becomes

G(tk+1, tk) =


∆t cos(θ̂k) 0

∆t sin(θ̂k) 0

0 ∆t

 (5.16)

Equations (2.4)-(2.12) can hence be used for the Distributed EKF Localizer. The follow-

ing subsection presents the simulation results along with a discussion of their significance.
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5.2.2 Results And Discussion

Results for the ROS/Gazebo Simulation will be presented in this section. Robot 1 starts

at known initial pose [1, 1, 30◦]T and Robot 2 at [1, 2, 30◦]T . The robots receive actuator

effort command from the motion planner, in this case moving straight at 0.4 m/s for

15 sec then in a circular arc. Two robots continuously take measurements from each

other and uses this information to update their estimated pose. The experiment runs

for around 90 sec. Figure 5.14 below shows the true trajectory of Robot 1 (thick blue

line) and the estimated trajectory from the proposed method (red), distributed EKF

(black) and dead reckoning (magenta).

Figure 5.14: Localization Comparison Results for Robot 1 (with measurement noise
std = 0.01)

Defining the error as

Errorest = ‖~xest − ~xtrue‖2 (5.17)

with ~x = [x, y]T . Figure 5.15 below illustrates the growth of the localization error

with time. We can observe that Exponential Localization method can most effectively

resist estimation error followed by the Distributed EKF and then Dead Reckoning. All
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estimations here are expected to diverge given there’s no process that serves to reduce

error and errors from process and measurement noise are anticipated to accumulate.

The sensor fusion and estimate update processes are there to help suppress the rate of

this divergence and the above results show that the proposed localization technique is

able to accomplish this task effectively.

Figure 5.15: Localization Error Comparison Results for Robot 1 (with measurement
noise std = 0.01)

Given the above outcomes, it is also desirable to study the effect of measurement noise

on the localization processes. The noise parameters used here are based on the published

specs for the Hokuyo Laser. A mean of 0.0 m and standard deviation of 0.01 m will put

99.7% of samples within 0.03 m of the true reading. Figure 5.11 shows a visualization of

the laser measurements with the standard deviation (std) equals 0.01. Figure 5.16 below

shows the same scenario only std equals 0.05. The edges of the measurement perimeter

are blurred reflecting the fluctuation of the measurements under noise.

Same simulation process is repeated under this noise level and results are given by figure

5.17 and figure 5.18. It can be seen that the same trend is preserved with the Exponential

Localization method having the lowest divergence rate and then Distributed EKF and

Dead Reckoning. However the overall localization error and divergence rate increased

under the increased measurement noise.
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Figure 5.16: Laser with Zero Mean and 0.05 Standard Deviation Gaussian Noise

Figure 5.17: Localization Comparison Results for Robot 1 (with measurement noise
std = 0.05)
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Figure 5.18: Localization Error Comparison Results for Robot 1 (with measurement
noise std = 0.05)

The same process is repeated for the case when measurement standard deviation equals

0.1 and results are shown in figure 5.19, 5.20, 5.21. And similar to the case above,

the general trend is agin preserved while the overall divergence for the estimations is

accelerated. Dead reckoning (DR) error stayed on relatively the same level for the reason

that DR takes only the wheel encoder readings as input and hence gets effected only by

process noise and not measurement noise.

The true value of any cooperative localization method lies in that as long as one robot in

the team has a means of reducing the localization error (through GPS, better hardware,

etc), this information can be shared among all team members and be used to reduce the

localization error of each. Figure 5.22 simulates such a scenario, here instead of taking

the estimated pose and covariance of the neighboring robot (robot 2) as input to the

localizer of robot 1, the position ground truth of robot 2 is passed in simulating the

case when only robot 2 has the ability to obtain accurate pose information and robot

1 has to make use of this information to reduce its localization error algorithmically.

The simulation is run for around 500 sec and results are shown in Figure 5.22 and 5.23.

We can see that comparing to the previous cases, the error in this scenario is effectively
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Figure 5.19: Laser with Zero Mean and 0.1 Standard Deviation Gaussian Noise

Figure 5.20: Localization Comparison Results for Robot 1 (with measurement noise
std = 0.1)
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Figure 5.21: Localization Error Comparison Results for Robot 1 (with measurement
noise std = 0.1)

bounded. The estimated trajectory resembles the true trajectory to a reasonable degree.

Discrepancies exist due to sensor calibration (for example choice of laser scan to represent

relative measurement) as well as parameter tuning (choice of initial state covariance,

process noise and measurement noise covariance). This error is expect to decrease with

further fine tuning of the system.
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Figure 5.22: Localization Results for Robot 1 with Ground Truth Neighbor Position
(measurement noise std = 0.05)

Figure 5.23: Localization Error for Robot 1 with Ground Truth Neighbor Position
(measurement noise std = 0.05)
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Conclusion

This thesis proposed a distributed cooperative localization technique that can incorpo-

rate multiple sensor measurements to achieve higher estimation accuracy. Robots in a

team can take measurements and exchange information among each other to update

their knowledge of the current position. Simulation is used to validate the performance

of the approach in both Matlab and ROS/Gazebo. Results from the Matlab simulation

show a good localization accuracy of the presented approach and an increase in this

accuracy with the number of measurements taken. The distributed EKF method is also

simulated as a comparison in ROS/Gazebo, and outcomes show that the proposed expo-

nential localization scheme yields superior results to the distributed EKF method under

varied measurement noise levels. The proposed technique is distributed in that each

robot can perform this localization process without the help of a centralized processor,

and is scalable for the computation time does not increase as the robot team enlarges and

increases only linearly with the number of measurements taken. The generality of this

scheme lies in the fact that uncertainties in the belief of the current robot, all neighboring

robots and sensor measurements have all been considered which yields a more realistic

result. Unlike sampling-based approaches, the proposed approach provides closed-form

expressions which significantly increases computational efficiency. Most existing coop-

erative localization schemes possess a subset of the the above attributes but rarely all.

Lastly, this technique is of second order in its estimation of an updated posterior which

is expected to be more accurate and reliable than first order methods.

The limitation of this method exists at its dependency on Gaussian noises which is shown

applicable in many cases such as the success of Extend Kalman Filter but is not the

most accurate model to represent random noises. Moreover, this is a local technique in
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that it depends on known initial poses and does not recover from localization failures

(defined by [7]). At its current state, this approach does not possess the ability to serve

as the sole localization scheme to localize a team of robots in that as errors accumulate

in the beliefs of neighboring robots, erroneous information will be given to the current

robot that leads to localization failures. However, this technique is local and prone to

error accumulation only when none of the member robots have a reasonable estimate

of their positions, as long as one robot possesses a good knowledge of its current pose

(via more accurate sensors or sophisticated but computationally expensive algorithms)

then this information can be used to drastically reduce the uncertainty of the entire

team which introduces a level of robustness to this technique and can also significantly

reduce hardware and computational cost of the team. This scenario is also simulated

and results show that the proposed approach can effectively reduce the localization error

with the help of ”advanced neighbors”. Table 6.1 shows a comparison of the proposed

method with the state of the arts presented in chapter 2.

Table 6.1: Final Comparison

Distibuted
EKF

Multi-Robot
MCL

Exponential
Localization

Restrictions on
ErrorDistribution

Requires Gaussian process and
measurement error

Nonparametric particle
representation of posterior

belief, no assumptions
on noise distribution

Gaussian

Global Localization No Yes No

State Recovery No
Possible given a well
designed resampling

process
No

Localization Accuarcy
Accurate when error

is small

Depends on the
number

of particles
used

Accurate within
an error range

Computational Cost

Small due to the
closed

form propagation
and update
equations

Depends on the number
of particles.
Can increase

dramatically with the
dimension of the state space

Small due to closed
form equations

Ease of
Implementation

Simple Can be involved Simple

Robustness
Prone to error due

to
linearization

Quite resistant to errors
given

multiple beliefs are maintained
simultaneously

Less susceptible to
errors given the well

conformity to the
motion model

Process Multiple
Detections

No No Yes

Complexity Relative
To Team Size

Fully distributed. Complexity
independent
of team size

Complexity independent
of

team size

Linear to
the Number of

measurements processed

As mention in chapter 5, it will desirable to find the optimal number of measurements

to fuse that would yield the best results in terms of localization accuracy and computa-

tion time. The accuracy of the exponential localization method is expect to see a great
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increase compared to results shown previously if the algorithm parameters (initial pose

covariance, process and measurement noise covariances, etc) can be find tuned. Estab-

lishing a systematic way of tuning these parameters can be a topic of its own. It is also

incredibly beneficial if the proposed method can be combined with sampling based ap-

proaches for their global localization and state recovery abilities. Lastly, experiments on

hardware are required to fully establish the advantage of the proposed scheme. Overall

this thesis has provided an alternative distributed cooperative localization technique in

the domain of Lie Group and Exponential Coordinates and has validated in simulation

the potential of this technique as the next state of the art.
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Calculation of Second Order

Gaussian Convolution

This derivation is based on [25]. Let f1(g) = f(g;µ1,Σ1) = ρ1(µ−1
1 g) and f2(g) =

f(g;µ2,Σ2) = ρ2(µ−1
2 g) with ρ1, ρ2 Gaussians centered at the identity. The convolution

of two Gaussians is given by

f1∗2(g;µ1∗2,Σ1∗2) = (f1 ∗ f2)(g)

=

∫
G
ρ1(µ−1

1 h)ρ2(µ−1
2 h−1g) dh

(A.1)

Following Lemma 1 in [25], the resulting mean is

µ1∗2 = µ1µ2 (A.2)

Lemma 1 in [25] also proves that for ρ1, ρ2 centered at the identity

∫
G

log(g)(ρ1 ∗ ρ2)(g) dg

=

∫
G

∫
G

log(g)ρ1(h)ρ2(h−1g) dg dh = 0

(A.3)
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Let c1 = µ2h, c2 = µ−1
1 µ−1

2 c1, c3 = µ−1
1 µ−1

2 g the definition of mean described by (3.20)

gives

∫
G

log(µ−1
1∗2g)(f1 ∗ f2)(g) dg

=

∫
G

∫
G

log(µ−1
1∗2g)ρ1(µ−1

1 h)ρ2(µ−1
2 h−1g) dg dh

=

∫
G

∫
G

log(µ−1
1∗2g)ρ1(µ−1

1 µ−1
2 c1)ρ2(c−1

1 g) dg dc1

=

∫
G

∫
G

log(µ−1
1∗2g)ρ1(c2)ρ2(c−1

2 µ−1
1 µ−1

2 g) dg dc2

=

∫
G

∫
G

log(µ−1
1∗2µ2µ1c3)ρ1(c2)ρ2(c−1

2 c3) dc3 dc2

(A.4)

If we define k = µ−1
1 h, q = (µ1µ2)−1g, q′ = µ−1

2 k−1µ2q, Equation (21) of [25] gives the

covariance of the convolution in the form

Σ1∗2 =

∫
G

∫
G
[log(µ−1

2 kµ2q
′)∨][log(µ−1

2 kµ2q
′)∨]Tρ1(k)ρ2(q′) dk dq′ (A.5)

Further let X = log(µ−1
2 kµ2), Y = log(q

′
) (and therefore x = Ad(µ−1

2 ) log(k)∨, y =

log(q
′
)∨), equation (A.5) becomes

Σ1∗2 =

∫
G

∫
G
[log(eXeY )∨][log(eXeY )∨]Tρ1(k)ρ2(q′) dk dq′ (A.6)

Expand log(eXeY )∨ using the BCH equation to the second order and retain the even

terms (since odd terms integrate to zero) gives
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Σ1∗2 =

∫
G

∫
G
(xxT + yyT )ρ1(k)ρ2(q

′
) dk dq

′

+
1

4

∫
G

∫
G
[ad(X)yyTad(X)T ]ρ1(k)ρ2(q

′
) dk dq

′

+
1

12

∫
G

∫
G
[ad(X)ad(X)yyT + (ad(X)ad(X)yyT )T ]...

ρ1(k)ρ2(q
′
) dk dq

′

+
1

12

∫
G

∫
G
[ad(Y )ad(Y )xxT + (ad(Y )ad(Y )xxT )T ]...

ρ1(k)ρ2(q
′
) dk dq

′

(A.7)

To Calculate The First Double Integral Term in (A.7)

Given x = Ad(µ−1
2 ) log(k)∨ and y = log(q

′
)∨

∫
G

∫
G
(xxT + yyT )ρ1(k)ρ2(q

′
) dk dq

′

=

∫
G
xxTρ1(k) dk +

∫
G
yyTρ2(q

′
) dq

′

= Ad(µ−1
2 )(

∫
G
[log(k)∨][log(k)∨]Tρ1(k) dk)Ad(µ−1

2 )T

+

∫
G
[log(q

′
)∨][log(q

′
)∨]Tρ2(q

′
) dq

′

= Ad(µ−1
2 )Σ1Ad(µ−1

2 )T + Σ2

(A.8)

And we define A = Ad(µ−1
2 )Σ1Ad(µ−1

2 )T , B = Σ2

To Calculate The Second Double Integral Term in (31)

Given ad(X) = ad(
d∑

i=1
xiEi) =

d∑
i=1

xiad(Ei), where Ei are the basis elements for SE(3),

and the fact that

xixj = eTi Ad(µ−1
2 )[log(k)∨][log(k)∨]TAd(µ−1

2 )T ej (A.9)
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then

∫
G
xixjρ1(k) dk

= eTi [

∫
G
Ad(µ−1

2 )[log(k)∨][log(k)∨]TAd(µ−1
2 )T dk]ej

= Aij

(A.10)

The second double integral in (A.7) is∫
G

∫
G
[ad(X)yyTad(X)T ]ρ1(k)ρ2(q

′
) dk dq

′

=

∫
G
ad(X)Bad(X)Tρ1(k) dk

=

∫
G
[

d∑
i=1

xiad(Ei)]B[
d∑

j=1

xjad(Ej)]
Tρ1(k) dk

=
d∑

i,j=1

ad(Ei)Bad(Ej)
T

∫
G
xixjρ1(k) dk

=
d∑

i,j=1

ad(Ei)Bad(Ej)
TAij

(A.11)

To Calculate The Third, Fourth Double Integral Term in (A.7)

It is defined that y = log(q
′
), therefore yiyj = eTi [log(q

′
)][log(q

′
)]T ej and∫

G
yiyjρ1(q

′
) dq

′
= Bij (A.12)
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With the above conclusion, we can perform the following integration∫
G

∫
G
ad(X)ad(X)yyTρ1(k)ρ2(q

′
) dk dq

′

=

∫
G
ad(X)ad(X)ρ1(k) dk

∫
G
yyTρ2(q

′
) dq

′

= [
d∑

i,j=1

ad(Ei)ad(Ej)Aij ]B

(A.13)

Applying the same reasoning, the third integration term in (A.7) results in

1

12

∫
G

∫
G
[ad(X)ad(X)yyT + (ad(X)ad(X)yyT )T ]ρ1(k)ρ2(q

′
) dk dq

′

=
1

12

[

d∑
i,j=1

ad(Ei)ad(Ej)Aij ]B +BT [

d∑
i,j=1

ad(Ei)ad(Ej)Aij ]
T


(A.14)

and the forth integration term results in

1

12

∫
G

∫
G
[ad(Y )ad(Y )xxT + (ad(Y )ad(Y )xxT )T ]ρ1(k)ρ2(q

′
) dk dq

′

=
1

12

[
d∑

i,j=1

ad(Ei)ad(Ej)Bij ]A+AT [
d∑

i,j=1

ad(Ei)ad(Ei)Bij ]
T


(A.15)

Combining the the above terms yield equations (3.22)-(3.28)
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