
Reinforcement Learning With Temporal Logic Rewards

Xiao Li, Cristian-Ioan Vasile and Calin Belta.

Abstract— Reinforcement learning (RL) depends critically on
the choice of reward functions used to capture the desired be-
havior and constraints of a robot. Usually, these are handcrafted
by a expert designer and represent heuristics for relatively
simple tasks. Real world applications typically involve more
complex tasks with rich temporal and logical structure. In this
paper we take advantage of the expressive power of temporal
logic (TL) to specify complex rules the robot should follow,
and incorporate domain knowledge into learning. We propose
Truncated Linear Temporal Logic (TLTL) as a specification
language,We propose Truncated Linear Temporal Logic (TLTL)
as a specification language,that is arguably well suited for the
robotics applications, We show in simulated trials that learning
is faster and policies obtained using the proposed approach
outperform the ones learned using heuristic rewards in terms
of the robustness degree, i.e., how well the tasks are satisfied.
Furthermore, we demonstrate the proposed RL approach in a
toast-placing task learned by a Baxter robot.

I. INTRODUCTION

The problem of a reinforcement learning (RL) agent trying
to exploit a faulty reward function and find a policy 1 that
achieves high returns but against the designer’s intentions is
referred to as reward hacking in [1]. The inability of ad-
hoc rewards to capture the semantics of complex tasks has
negative repercussions on the learned policies. It is not easy
to design and prove that increasing returns translate to better
satisfaction of the specifications. [2] provides an illustrative
example of reward hacking in RL.

In this paper, we use formal specification languages to
capture the designer’s requirements of what the robot should
achieve. We propose Truncated Linear Temporal Logic
(TLTL) as a specification language with an extended set of
operators defined over finite-time trajectories of a robot’s
states. TLTL provides convenient and effective means of
incorporating complex intentions, domain knowledge, and
constraints into the learning process. We define quantitative
semantics (also referred to as robustness degree) for TLTL.
The robustness degree is used to transform temporal logical
formulae into real-valued reward functions.

Making good use of the reward function in RL has
not been the main focus in modern reinforcement learn-
ing research. Combining temporal logic with reinforcement
learning to learn logically complex skills has been looked at
only very recently. In [3], the authors used the log-sum-exp
approximation to adapt the robustness of STL specifications

X. Li and C. Belta are with Boston University, Boston, MA. Email:
{xli87,cbelta}@bu.edu. C.-I. Vasile is with Massachusetts Institute of Tech-
nology, Cambridge, MA. Email: cvasile@mit.edu

This work is partially supported by the ONR under grants N00014-14-1-
0554 and by the NSF under grants NRI-1426907 and CMMI-1400167

1We will use the terms controller and policy interchangeably throughout
the paper.

to Q-learning on τ -MDPs in discrete spaces. Authors of [4]
and [5] has also taken advantage of automata-based methods
to synthesize control policies that satisfy LTL specifications
for MDPs with unknown transition probability.These meth-
ods are constrained to discrete state and action spaces, and
a somewhat limited set of temporal operators. To the best
of our knowledge, this paper is the first to apply TL in
reinforcement learning on continuous state and action spaces,
and demonstrates its abilities in experimentation.

We compare the convergence properties and the quality
of learned policies of RL algorithms using temporal logic
(i.e., robustness degree) and heuristic reward functions. In
addition, we compare the results of a simple TL algorithm
against a more elaborate RL algorithm with heuristic re-
wards. In both cases better quality policies were learned
faster using the proposed approach with TL rewards than
with the heuristic reward functions.

II. BACKGROUND

A. Policy Search in Reinforcement Learning

We begin the introduction of policy search with the
definition of an infinite MDP.

Definition 1. An infinite MDP is a tuple
〈S,A, p(·, ·, ·), R(·)〉, where S ⊆ IRn is a continuous
set of states; A ⊆ IRm is a continuous set of actions;
p : S ×A× S → [0, 1] is the transition probability function
with p(s, a, s′) being the probability of taking action a ∈ A
at state s ∈ S and ending up in state s′ ∈ S (also commonly
written as a conditional probability p(s′|s, a)); R : τ → IR
is a reward function where τ = (s0, a0, ..., sT ,) is the
state-action trajectory, T is the horizon.

In RL, the transition p(s, a, s′) is unknown to the learning
agent. The reward function R(τ) can be designed or learned
(as in the case of inverse reinforcement learning). The goal of
RL is to find an optimal stochastic policy π? : S×A→ [0, 1]
that maximizes the expected accumulated reward, i.e.

π? = arg max
π

Epπ(τ) [R(τ)] , (1)

pπ(τ) is the trajectory distribution from following policy π.
And R(τ) is the reward obtained given τ .

In policy search methods, the policy is represented by
a parameterized model (e.g., neural network, radial basis
function) denoted by π(s, a|θ) (also written as πθ in short)
where θ is the set of model parameters. Search is then
conducted in the policy’s parameter space to find the optimal
set of θ that achieves (1)

θ? = arg max
θ

Epπθ (τ) [R(τ)] , (2)

B. Relative Entropy Policy Search

Relative Entropy Policy Search is an information-theoretic
approach that solves the policy search problem. The episode-
based version of REPS can be formulated as the following
constrained optimization problem

max
p(τ)

Ep(τ) [R(τ)] s.t. DKL(p(τ)||qπθ (τ)) < ε, (3)

where qπθ (τ) is the trajectory distribution following the
existing policy. DKL() is the KL-divergence between two
policies and ε is a threshold. The optimization problem
in (3) can be solved using the Lagrange multipliers method
which results in a closed-form trajectory distribution update
equation given by

p(τi) ∝ exp

(
R(τi)

η

)
. (4)

where η is the Lagrange multiplier obtained from optimizing
the dual function

g(η) = ηε+ η log
∑
i

1

N
exp

(
R(τi)

η

)
(5)

We refer interested readers to [6] for detailed derivations.
We adopt the time-varying linear-Gaussian policies πθt =

N (Ktst + kt,Σt) (here θt = (kt,Σt) for t = 0, ..., T)
and weighted maximum-likelihood estimation to update the
policy parameters (feedback gain Kt is kept fixed to reduce
the dimension of the parameter space). This approach has
been used in [7]. The difference is that [7] recomputes p(τi)
at each step t using cost-to-go before updating θi. Since a
temporal logic reward (described in the next section) depends
on the entire trajectory, it doesn’t have the notion of cost-to-
go and can only be evaluated as a terminal reward. Therefore
p(τi) (written short as pi) is computed once and used for
updates of all θt (similar approach used in episodic PI-REPS
[8]). The resulting update equations are

k′t =

N∑
i

piki,t

Σ′
t =

N∑
i

pi(ki,t − k′t)(ki,t − k′t)T ,

(6)

where ki,t is the feed-forward term in the time-varying linear-
Gaussian policy at time t and for sample trajectory i.

III. TRUNCATED LINEAR TEMPORAL LOGIC(TLTL)

In this section, we propose TLTL, a new temporal logic
that we argue is well suited for specifying goals and intro-
ducing domain knowledge for the RL problem.

A. TLTL Syntax And Semantics

A TLTL formula is defined over predicates of form f(s) <
c, where f : IRn → IR is a function and c is a constant. A
TLTL specification has the following syntax:

φ := > | f(s) < c | ¬φ | φ ∧ ψ | φ ∨ ψ |
♦φ | 2φ | φU ψ | φ T ψ | © φ | φ⇒ ψ,

(7)

where f(s) < c is a predicate, ¬ (negation/not), ∧ (con-
junction/and), and ∨ (disjunction/or) are Boolean connec-
tives, and ♦ (eventually), 2 (always), U (until), T (then),
© (next), are temporal operators. Implication is denoted by
⇒ (implication). TLTL formulas are evaluated against finite
time sequences over a set S. As it will become clear later,
such sequences will be produced by the MDP in Definition 1.

We denote st ∈ S to be the state at time t, and st:t+k to
be a sequence of states (state trajectory) from time t to t+k,
i.e., st:t+k = stst+1...st+k. The Boolean semantics of TLTL
is defined as:

st:t+k |= f(s) < c ⇔ f(st) < c,

st:t+k |= ¬φ ⇔ ¬(st:t+k |= φ),

st:t+k |= φ⇒ ψ ⇔ (st:t+k |= φ)⇒ (st:t+k |= ψ),

st:t+k |= φ ∧ ψ ⇔ (st:t+k |= φ) ∧ (st:t+k |= ψ),

st:t+k |= φ ∨ ψ ⇔ (st:t+k |= φ) ∨ (st:t+k |= ψ),

st:t+k |=©φ ⇔ (st+1:t+k |= φ) ∧ (k > 0),

st:t+k |= 2φ ⇔ ∀t′ ∈ [t, t+ k) st′:t+k |= φ,

st:t+k |= ♦φ ⇔ ∃t′ ∈ [t, t+ k) st′:t+k |= φ,

st:t+k |= φ U ψ ⇔ ∃t′ ∈ [t, t+ k) s.t. st′:t+k |= ψ

∧ (∀t′′ ∈ [t, t′) st′′:t′ |= φ),

st:t+k |= φ T ψ ⇔ ∃t′ ∈ [t, t+ k) s.t. st′:t+k |= ψ

∧ (∃t′′ ∈ [t, t′) st′′:t′ |= φ).

Intuitively, state trajectory st:t+k |= 2φ if the specification
defined by φ is satisfied for every subtrajectory st′:t+k, t′ ∈
[t, t+ k). Similarly, st:t+k |= ♦φ if φ is satisfied for at least
one subtrajectory st′:t+k, t′ ∈ [t, t + k). st:t+k |= φ U ψ if
φ is satisfied at every time step before ψ is satisfied, and ψ
is satisfied at a time between t and t + k. st:t+k |= φ T ψ
if φ is satisfied at least once before ψ is satisfied between
t and t + k. A trajectory s of duration k is said to satisfy
formula φ if s0:k |= φ.

We equip TLTL with quantitative semantics (robustness
degree) , i.e., a real-valued function ρ(st:t+k, φ) of state
trajectory st:t+k and a TLTL specification φ that indicates
how far st:t+k is from satisfying or violating the specification

φ. The quantitative semantics of TLTL is defined as follows:

ρ(st:t+k,>) = ρmax,

ρ(st:t+k, f(st) < c) = c− f(st),

ρ(st:t+k,¬φ) = − ρ(st:t+k, φ),

ρ(st:t+k, φ ⇒ ψ) = max(−ρ(st:t+k, φ), ρ(st:t+k, ψ))

ρ(st:t+k, φ1 ∧ φ2) = min(ρ(st:t+k, φ1), ρ(st:t+k, φ2)),

ρ(st:t+k, φ1 ∨ φ2) = max(ρ(st:t+k, φ1), ρ(st:t+k, φ2)),

ρ(st:t+k,©φ) = ρ(st+1:t+k, φ) (k > 0),

ρ(st:t+k,2φ) = min
t′∈[t,t+k)

(ρ(st′:t+k, φ)),

ρ(st:t+k,♦φ) = max
t′∈[t,t+k)

(ρ(st′:t+k, φ)),

ρ(st:t+k, φ U ψ) = max
t′∈[t,t+k)

(min(ρ(st′:t+k, ψ),

min
t′′∈[t,t′)

ρ(st′′:t′ , φ))),

ρ(st:t+k, φ T ψ) = max
t′∈[t,t+k)

(min(ρ(st′:t+k, ψ),

max
t′′∈[t,t′)

ρ(st′′:t′ , φ))),

where ρmax represents the maximum robustness value.
Moreover, ρ(st:t+k, φ) > 0 ⇒ st:t+k |= φ and
ρ(st:t+k, φ) < 0 ⇒ st:t+k 6|= φ, which implies that the
robustness degree can substitute Boolean semantics in order
to enforce the specification φ. As an example, consider spec-
ification φ = ♦(s < 10), where s is a one dimensional state,
and a two step state trajectory s0:2 = s0s1 = [11, 5]. The
robustness is ρ(s0:1, φ) = max

t∈{0,1}
(10− st) = max(−1, 5) =

5. Since ρ(st, φ) > 0, s0:1 |= φ and the value ρ(st, φ) = 5
is a measure of the satisfaction margin (refer to Example 1
in [3] for a more detail example on task specification using
TL and robustness).

B. Comparison With Existing Formal Languages

One of the most important elements in using a formal
language in reinforcement learning is the ability to transform
a specification into a real-valued function that can be used as
reward. This requires quantitative semantics to be defined for
the chosen language. One obvious choice is Signal Temporal
Logic (STL) [9](related to Metric Temporal Logic (MTL),
which is defined over infinite real-valued signals with a time
bound required for every temporal operator. While this is
useful for analyzing signals, it can cause problems when
defining tasks for robots. For example if the goal is to have
the robot learn to put a beer in the fridge, the robot only
needs to find the correct way to operate a fridge (e.g. open
the fridge door, place the beer on a shelf and close the fridge
door) and possibly perform this sequence of actions at an
acceptable speed. But using STL to specify this task would
require the designer to manually put time bounds on how
long each action/subtask should take. If this bound is set
inappropriately, the robot may fail to find a satisfying policy
due to its hardware constraints even though it is capable of
performing the task. This is quite common in robotic tasks
where we care about the robot accomplishing the given task

but don’t have hard constraints on when and how fast the
task should be finished. In this case mandatory time bounds
add unnecessary complexity to the specification and thus the
overall learning process.

Two other possible choices are BLTL [10] and LTLf [11].
Both can be evaluated over finite sequences of states.
However, similar to STL, temporal operators in BLTL re-
quire time bounds. Both languages are defined over atomic
propositions rather than predicates, and do not come with
quantitative semantics.

With the above requirements in mind, we design TLTL
such that its formulas over state predicates can be evaluated
against finite trajectories of any length. In the context of
reinforcement learning this can be the length of an execution
episode. TLTL does not require a time bound to be specified
with every use of a temporal operator. If however the user
feels that explicit time bounds are helpful in certain cases,
the semantics of STL can be easily incorporated into TLTL.

IV. EXPERIMENTS

In this section we first use two simulated manipulation
tasks to compare TLTL reward with a discrete reward as well
as a distance-based continuous reward commonly used in the
RL literature. We then specify a toast placing task in TLTL
where a Baxter robot is required to learn a combination of
reaching policy and gripper timing policy 2.

A. Simulated 2D Manipulation Tasks

Figure 1 shows our 2D simulated environment with a
three joint manipulator. The 8 dimensional state feature space
includes joint angles, joint velocities and the end-effector
position. The 3 dimensional action space includes the joint
velocities. Exploration is automatically taken care of by the
covariance update in Equation (6).

Fig. 1 : 2D manipulation tasks. left: Task 1. goal reaching while
avoiding obstacles. right: Task 2. sequential goal reaching while
avoiding obstacles

For the first task, the end-effector is required to reach the
goal position g while avoiding obstacles o1 and o2. The
discrete and continuous rewards are summarized as follows:

2The simulation is implemented in rllab [12] and gym [13]. The experi-
ment is implemented in rllab and ROS

Fig. 2 : Learning curves for TLTL robustness, discrete reward and continuous reward trained with episode based REPS, as well as discrete
and continuous rewards trained with step based REPS. left: task 1, each episode is 200 time-steps, each iteration uses 20 sample trajectories
and trained for 200 iterations right: task 2, each episode is 500 time-steps, 20 samples per iteration and trained for 500 iterations

rdiscrete1 =

5 dg ≤ 0.2

−2 do1,2 ≤ ro1,2
0 everywhere else

rcontinuous1 = −c1dg + c2

2∑
i=1

doi .

(8)

In the above rewards, dg is the Euclidean distance between
the end-effector and the goal, doi is the distance between
the end-effector and obstacle i,roi is the radius of obstacle i.
The TLTL specification and its resulting robustness function
is described as

φ1 = ♦2(dg < 0.2) ∧2(do1 > ro1 ∧ do2 > ro2) (9)

ρ1(φ1, (xe, ye)0:T) = min

(
max
t∈[0,T)

(
min

t′∈[t,T)

(
0.2− dtg

))
,

min
t∈[0,T)

(
dto1 − ro1 , d

t
o2 − ro2

))
.

(10)

In English, φ1 describes the task of ”eventually always
stay at goal g and always stay alway from obstacles”. The
user needs only to specify φ1 and the reward function ρ1
is generated automatically from the quantitative semantics
indicated in Section III-A. Here (xe, ye)0:T is the trajectory
of the end-effector position. dt is the is distance at time t.

For the second task, the gripper is required to visit goals
gr, gg , and gb in this specific sequence while avoiding the
obstacles (one more obstacle is added to further constrain
the free space). The discrete and continuous rewards are
summarized as

rdiscrete2 =

5 goals visited in the right order
−5 goals visited in the wrong
−2 do1,2,3 ≤ ro1,2,3
0 everywhere else

rcontinuous2 = −c1dgi + c2(dgj + dgk) + c3

3∑
i=1

doi .

(11)

Fig. 3 : first three: Experiment execution. The joint states are
measured by encoders, the end-effector states are tracked using the
motion tracking system (cameras in the back). last: Definition of
toaster region predicates. Each episode has a horizon of 100 time-
steps (around 6 seconds) and each update iteration uses 10 sample
trajectories. Episode based REPS is again used as the RL algorithm
for this task.

Here an addition state vector is maintained to record which

goals have already been visited in order to know what the
next goal is. In rcontinuous2 , gi is the correct next goal to visit
and gj , gk are the goals to avoid. The TLTL specification is
defined as

φ2 =(ψgr T ψgg T ψgb) ∧ (¬(ψgg ∨ ψgb) U ψgr)∧

(¬(ψgb) U ψgg) ∧ (
∧

i=r,g,b

2(ψgi ⇒©2¬ψgi)) ∧2ψo,

(12)

where ψgi : dgi < 0.2 is the predicate for goal gi, ψo :∧
j=1,2,3

doj > roj is the obstacle avoidance constraint (
∧

is a shorthand for a sequence of conjunction). In English,
φ2 states ”visit gr then gg then gb, and don’t visit gg or
gb until visiting gr, and don’t visit gb until visiting gg ,
and always if visited gi implies next always don’t visit gi
(don’t revisit goals), and always avoid obstacles” . Due to
space constraints the robustness of φ2 will not be explicitly
presented, but it will also be a complex function consisted
of nested min()/max() functions that would be difficult to
design by hand but can be generated from the quantitative
semantics of TLTL.

To compare the influence of reward functions on the
learning outcome, we first fix the learning algorithm to be
the episode based REPS and compare the average return per
iteration for TLTL robustness reward, discrete reward and
continuous reward. However it is meaningless to compare
returns on different scales. We therefore take the sample tra-
jectories learned with rdiscrete and rcontinuous and calculate
their corresponding TLTL robustness return for comparison.
The reason for choosing TLTL robustness as the comparison
measure is that both the discrete and continuous rewards have
semantic ambiguity depending on the choices of the discrete
returns and coefficients ci. TLTL is rigorous in its semantics
and a robustness greater than zero guarantees satisfaction of
the task specification.

In addition, since rdiscrete and rcontinuous can provide a
immediate reward per step (as oppose to TLTL robustness
which requires the entire trajectory to produce a terminal
reward), we also used a step based REPS[7] that updates at
each step using the cost-to-go. This is a common technique
used to reduce the variance in the Monte Carlo return
estimate. For continuous rewards, a grid search is performed
on the coefficients ci and the best outcome is reported. We
train each comparison case on 4 different random seeds. The
mean and variance of the average returns are illustrated in
Figure 2.

It can be observed that in both tasks TLTL robustness
reward resulted in the best learning outcome in terms of con-
vergence rate and final return. For the level of stochasticity
presented in the simulation, step based REPS showed only
minor improvement in the rate of convergence and variance
reduction. For the simpler case of task 1, a well tuned contin-
uous reward achieves comparable learning performance with
the TLTL robustness reward. For task 2, the TLTL reward
outperforms competing reward functions by a considerable

margin. Discrete reward fails to learn a useful policy due to
sparse returns. A video of the learning process is provided.

B. Learning Toast-Placing Task With A Baxter Robot

In this experiment, a Baxter robot is used to perform the
task of placing a piece of bread in a toaster (as shown in
Figure (3)).The robot will simultaneously learn to reach the
specified region and a gripper timing policy that releases the
object at the right instant (as oppose to directly specifying
the point of release). The 21 dimensional state feature space
includes 7 joint angles and joint velocities, the xyz-rpy pose
of the end-effector and the gripper position. The end-effector
pose is tracked using the motion tracking system as an
additional source of information. The gripper position ranges
continuously from 0 to 100 with 0 being fully closed. The 8
dimensional action space includes 7 joint velocities and the
desired gripper position. Actions are sent at 20hz.

The placing task is specified by the TLTL formula

φ =2(¬(ψtable ∨ ψtoaster)) ∧ ♦(ψslot)∧
(ψgc U ψslot) ∧2(ψslot ⇒©2(ψgo)),

(13)

where ψtable, ψtoaster, ψslot are predicates describing spatial
regions in the form (xmin < xe < xmax) ∧ (ymin < ye <
ymax) ∧ (zmin < ze < zmax) ((xe, ye, ze) is the position
of the end-effector). Orientation constraints are specified
in a similar way to ensure the correct pose is reached at
the position of release. The regions for slot and toaster
are depicted in Figure 3. ψgc : pg < δclose and ψgo :
pg > δopen describe the conditions for gripper open/close. In
English, the specification describes the process of ”always
don’t hit the table or the toaster, and eventually reach the
slot, and keep gripper closed until slot is reached, and
always if slot is reached implies next always keep gripper
open”. The robustness of φ (ρ(φ, pe0:T)) is again generated
from the TLTL quantitative semantics and is satisfied when
ρ(φ, pe0:T) > 0 . Due to space constraints ρ(φ, pe0:T) will
not be explicitly shown. The robustness for ψgc and ψgo are
normalized to the same scale as that of the other predicates.
This is to ensure that all sub-formulas are treated equally
during learning.

For a comparison case, we design the following reward
function

rt =
−c1dtslot + c2d

t
toaster − c3|ptg| min

t′∈[0,t)
dtslot > 0.03

−c1dtslot + c2d
t
toaster − c3|100− ptg| min

t′∈[0,t)
dtslot < 0.03.

(14)

In the above equation, dtslot and dttoaster are the Euclidean
distances between the end-effector and the center of the
toaster regions defined in Figure 3 (at time t). ptg is the
gripper position at time t. The coefficients c1,2,3 are manually
tuned and the best outcome is reported.

In Figure 4, trajectories learned from rt at each itera-
tion are used to calculated their corresponding robustness

Fig. 4 : Training curves for Baxter toast-placing task. An episode
is 100 time-steps long (around 6 seconds). Each update iteration
uses 10 sample trajectories. Trained for 80 iterations

value (as explained in the previous section) for a reason-
able comparison. We can observe that training with TLTL
reward has reached a significantly better policy than that
with the comparison reward. One important reason is that
the semantics of rt in Equation (14) relies heavily on the
relative magnitudes of the coefficients c1,2,3. For example
if c1 is much higher than c2 and c3, then rt will put
most emphasis on reaching the slot and pay less attention
on learning the correct gripper timing policy or obstacle
avoidance. An exhaustive hyperparameter search on the
physical robot is infeasible. In addition, rt expresses much
less information than ρ(φ, pe0:T). For example, penalizing
collision with the toaster is necessary only when the gripper
comes in contact with the toaster. Otherwise the agent should
focus on the other subtasks (reaching the slot, improving the
gripper policy). For reward rt, this logistics is again achieved
only by obtaining the right combination of hyperparameters.
However, because the robustness function is made up of a
series of embedded min()/max() functions, at any instant
the agent will be maximizing only a set of active functions.
These active functions represent the bottlenecks in improving
the overall return. By adopting this form, the robustness
reward effectively focuses the agent’s effort in improving
the most critical set of subtasks at any time so to achieve
an efficient overall learning progress. However, this may
render the TLTL robustness reward susceptible to scaling
Therefore, proper normalization is required. Currently this
normalization process is achieved manually, future work can
include automatic or adaptive normalization of predicate
robustnesses.

To evaluate the resulting behavior, 10 trials of the toast-
placing task is executed with the policy learned from each
reward. The policy from the TLTL reward achieves 100%
success rate while the comparison reward fails to learn the
task (due to its inability to learn the correct gripper time
policy). The specification in Equation (14) does not impose
constraints on joint efforts, resulting in some minor quivering

motion. This can be alleviated by setting action bounds in the
TLTL formula. A video of the learning process is provided.

V. CONCLUSION

In this paper we proposed TLTL, a formal specification
language with quantitative semantics that is designed for
convenient robotic task specification. We compare learning
performance of the TLTL reward with two of the more
commonly used forms of reward (namely a discrete and
continuous form of reward functions) in a 2D simulated
manipulation environment by fixing the RL algorithm. We
also compare the outcome of TLTL reward trained using
a relatively inefficient episode based method with the dis-
crete/continuous rewards trained using a lower variance step
based method. Results show that TLTL reward not only
outperformed all of its comparison cases, it also enabled a
non-hierarchical RL method to successfully learn to perform
a temporally structured task. Furthermore, We used TLTL
to express a toast-placing task and demonstrated successful
learning on a Baxter robot.

REFERENCES

[1] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete Problems in AI Safety,” pp. 1–29, 2016.
[Online]. Available: http://arxiv.org/abs/1606.06565

[2] A. Dario and J. Clark. Faulty reward functions in the wild. [Online].
Available: https://blog.openai.com/faulty-reward-functions/

[3] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q -
Learning for Robust Satisfaction of Signal Temporal Logic Specifica-
tions,” 2016.

[4] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, S. Seshia, and
Others, “A learning based approach to control synthesis of markov
decision processes for linear temporal logic specifications,” Decision
and Control (CDC), 2014 IEEE 53rd Annual Conference on, pp. 1091–
1096, 2014.

[5] J. Fu and U. Topcu, “Probably Approximately Correct MDP Learning
and Control With Temporal Logic Constraints,” 2014. [Online].
Available: http://arxiv.org/abs/1404.7073

[6] M. P. Deisenroth, “A Survey on Policy Search for Robotics,” Foun-
dations and Trends in Robotics, vol. 2, no. 1, pp. 1–142, 2011. [On-
line]. Available: http://www.nowpublishers.com/articles/foundations-
and-trends-in-robotics/ROB-021

[7] Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, and
S. Levine, “Path integral guided policy search,” arXiv preprint
arXiv:1610.00529, 2016.

[8] V. Gómez, H. J. Kappen, J. Peters, and G. Neumann, “Policy search
for path integral control,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2014,
pp. 482–497.

[9] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6246 LNCS, pp. 92–106, 2010.

[10] T. Latvala, A. Biere, K. Heljanko, and T. Junttila, “Simple bounded
LTL model checking,” Formal Methods in Computer-Aided Design,
vol. 3312, no. LCNS, pp. 186–200, 2004. [Online]. Available:
http://www.springerlink.com/index/A1JNFCB7Q9KNC1Q1.pdf

[11] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and Linear
Dynamic Logic on finite traces,” IJCAI International Joint Conference
on Artificial Intelligence, pp. 854–860, 2013.

[12] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous control,”
in Proceedings of the 33rd International Conference on Machine
Learning (ICML), 2016.

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

