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Abstract—For satellite servicing, it is necessary to remove
a patch of multi-layer insulation (MLI) that covers the access
panel. We consider the case where this patch is secured by tape
and desire to use ground-based teleoperation to carefully cut
the tape on three sides of the patch. Communication delays of
several seconds motivate the development of an online method
to enable failure detection by the remote (on-orbit) robot
system, so that cutting can be stopped without having to wait
several seconds for the ground-based operator to observe the
failure. This method is based on a model that predicts the
force in the direction of cutting. The model parameters are
provided by a recursive least squares estimator, with vector-like
forgetting factors, that also includes a throttling mechanism to
ensure that the estimator is used only when operating conditions
and measurements enable reasonable outcomes. During cutting,
the predicted force is compared to the measured force to
detect various types of failures. Experiments are conducted
on a ground-based platform to demonstrate that the proposed
estimation system can reliably detect these failures.

I. INTRODUCTION

NASA’s Satellite Servicing Capabilities Office (SSCO)
has been exploring technology to enable ground-based teler-
obotic servicing of satellites on-orbit [1]. One challenge is
that delay in the telemetry and video feedback is on the
order of seconds, which makes it difficult for an operator
to stop an action when unexpected events occur before any
damage takes place. In this paper, we consider the task
of telerobotically cutting the tape that fastens the Multi-
Layer Insulation (MLI) patch over the satellite access panel.
Possible failure modes include bunching, tearing of the tape,
slipping out of the tape seam, and blockage by hard surfaces
or wires.

We assume the model-based telemanipulation approach
described in our previous work [2], where the ground-based
operator interacts with a local task model (simulation) and
the remote robot uses sensor-based control to attempt to
replicate the results of the simulation (a few seconds later) in
the real environment. Thus, it is advantageous to implement
a Task Monitor on the remote robot that can detect when it
has failed to replicate the simulation. In this case, the remote
system can abort the current action rather than waiting
several seconds for the operator to observe and react to the
failure. The Task Monitor is based on a previously-developed
model of the expected force in the direction of cutting, which
consists of a coefficient of kinetic (Coulomb) friction and a
constant cutting force [3]. During cutting, the Task Monitor
compares the measured force to the force predicted by the
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model and stops the task if the discrepancy is greater than
a specified threshold (indicating a failure). One limitation
of the prior work is that these two parameters were based
on off-line experimental measurements and therefore do not
consider variations in the material properties of the MLI
(e.g., due to long-term exposure in space). This paper builds
on that work by introducing an estimator that updates the
model parameters during the task. This introduces several
design challenges. One challenge is that there is a tradeoff
between the responsiveness of the estimator and the ability to
detect anomalies. For example, bunching of the tape causes
a sudden increase in the measured force, but this should be
detected as an anomaly and should not allow the estimator to
adapt the parameters based on that measurement. A second
challenge is that the two model parameters are not observable
unless there is sufficient variability in the applied normal
force.

Previous efforts have been made to accurately estimate
interaction forces at the cutting interface. Most of the in-
teraction force modelling techniques are developed under
the context of machining operations (e.g., turning, milling).
However, due to the fact that cutting and shearing processes
with metal on metal contact are relatively uniform both at
the interface as well as in material properties, modelling
usually assumes constant geometric and material parameters.
One exception is in orthopaedic surgery, where a relationship
between cutting force and bone density was determined, with
the goal of providing real-time bone quality information
to the surgeon [4]. Cutting of biological materials with
scissors has been modeled as a sequence of deformation and
fracture phases, utilizing energy-based fracture mechanics
[5], [6]. Others have used a more geometric approach to
model the cutting force of scissors in general [7]. Needle
insertion force during surgical procedures was estimated by
a disturbance observer that estimated variations in friction
force; a recursive least squares formulation converts this
variation into changes in the friction parameters and hence
obtains estimates of the force parameters [8].

The remainder of the sections are structured as follows.
Section II introduces the task model and the estimator.
Section IIT describes the experimental setup, which consists
of a da Vinci master console and a Barrett Whole Arm
Manipulator (WAM); further details can be found in [2],
[3], [9]. This section also presents definitions and values
for the various tunable estimator parameters. Section IV
presents results followed by a discussion of their significance.
Section V concludes the paper.

4562



II. FORCE MODEL AND PARAMETER ESTIMATOR
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Fig. 1. Task Monitor Flowchart

The forces exerting on the cutter during a cutting process
under hybrid force control consist of a normal force F,
and a resistive force F}, as depicted in Fig. 2. These are
both measured by a force sensor. We have modeled the
resistive force as a linear combination of Coulomb friction
and a constant cutting force (from deforming the MLI). The
relationship is given by the following linear equation:

Fy = pr| Fo| + Fe M

where p, is the coefficient of kinetic friction and F, is the

Fig. 2. Forces Exerted on The Cutter During Cutting

cutting force due to shearing of the tape. Here we assume that
the positive F; and F, direction opposes the manipulator’s
direction of motion (while cutting, F; is always greater than
zero). Previous experiments [3] have verified that this simple
model can adequately predict the force, so we can avoid
the use of a more complex model that would require an
estimator of a higher dimension and greater computational
resources to execute the estimator online. Maintaining an
acceptable failure detection accuracy while minimizing the
computational complexity is especially important for space
hardware that is limited in its computing capabilities. We
have taken the absolute value of F}, to account for the two
cutting strategies (compression-based and tension-based) that
were presented in [3]; the main difference between these
strategies is the sign of F,.

The goal is to design an estimator such that for given
measurements y = [Fy, F,]7, parameters & = [y, F.]7 can
be recursively updated (denote the estimated parameters by
& = [fix, F.)7) and that & will adapt to small changes in
the cutting environment (material properties, cutter contact
conditions, etc.). But, the estimated force given by F =
e Fn + F, will be significantly different from the measured
F; when a cutting abnormality occurs. This adaptive param-
eter update step can be illustrated by Fig. 3 below.
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Fig. 3: Estimator Flowcha.q; F,, and F} are measured by force sensor, [ig
and F, are estimated, and F3 is predicted by model.

The proposed approach utilizes a Recursive Least Squares
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(RLS) Estimator with vector-like forgetting factors. The
choice of an RLS estimator is based on the fact that a least
squares estimator in its recursive form is the least com-
putationally demanding. The vector-like forgetting factors
enable us to individually adjust the variational rates of the
parameters, as discussed below.

Equation 1 can be rewriten as

Fy = [|Fa| 1] {’;f“] =H'z 2)

Let Pi be the covariance of the estimated parameters. The
estimation at step k£ can be formulated as (according to [10]):

Ky = P 1 Hi(H{ Po_1 Hp +1)7" @)
&p = Zp_1 + Kn(yy — HE @3_1) (4)
P.=AYI - KyH )P, A™! (5)

where A = diag(\,,,Ar.) contains the forgetting factor
for each parameter (0 < A; < 1). The smaller \; is,
the more weight is put on recent data. By incorporating
forgetting factors, the estimator can be controlled such that
the coefficient of kinetic friction (u) is updated taking into
account more historic data and the cutting force (F,) updated
with more emphasis on recent data. This aligns with the
expectation that if the material properties of the cutter and
MLI do not change abruptly, iy should vary in a small range.
Mild variations in the measured tangential force are likely
due to varied cutting conditions, such as slight wrinkling of
the tape, and generally do not indicate cutting failures. To
handle cases like these, we choose a lower forgetting factor
for F, so that it can take more responsibility for adapting to
the changes.

In addition to forgetting factors, the method checks sit-
uations where the estimator would give inaccurate results
and employs throttling (i.e., disables the estimator) to ensure
reasonable outcomes, as shown in Fig. 1. The first situation
is when the observability is low, which occurs when there
is insufficient variation in the input vector [|F},|, 1]. This is
more likely to occur when force control is used to maintain
contact with the surface, as proposed in [2]. To find a
measure for variation, a Moving Window Least Squares is
imposed on the measured normal force and a line F,, = at+b
is fit to the data within each fixed size window. At time ¢(n),
the estimation is given by:

igh>

7

-1

w i=n—w

Where u(i) = [t(i),1]T and w is the window size. The slope
of that line is used as a measure of variation. A threshold
is then set on a and if a(t) < threshold the estimator
is turned off and failure identification is executed with the
previous set of valid estimates. During our experiments, we

also observed cases where the estimator produced negative
[t and/or F.,; since these are physically unreasonable values,
they are discarded and the previous valid estimates are used
to compute the F, that is used for failure detection.

III. EXPERIMENT AND ESTIMATOR SETUP

The experimental system consists of a da Vinci master
console and a Barrett WAM. Data from nine users was
collected with approval from the Johns Hopkins University
Homewood Institutional Review Board (HIRB00000701).
These users performed a number of trials, where each
trial consisted of cutting through one vertical strip of tape
as illustrated in Fig. 4 [11]. For some trials, the system
controlled the normal force, F;,, whereas for other trials the
operator had control over this direction and could apply any
desired normal force. Video, joint encoder and force sensor
data are recorded for analysis.
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Fig. 4. Mock MLI Samples (image courtesy of Steve Vozar)

The goal of the estimator is to accurately identify cutting
anomalies, which are separated into the following three
categories: (1) cutter motion obstruction, (2) MLI tearing,
and (3) cutter slippage (sliding without cutting). Figure 5
shows examples of these anomalies that were recorded during
the experiments; note that MLI bunching and cutter sinking
(Fig. 5 top right and bottom left) are both examples of cutter
motion obstruction.

TABLE I
EVALUATION CRITERIA FOR CUTTING ANOMALY IDENTIFICATION
(COMPRESSION STATEGY)

Evaluation Criteria
F: >F} + threshold
F, <0 and F; <F} + threshold
Fn >0 and F; <F; + threshold

Cutter Motion Obstruction
MLI Tearing
Cutter Sliding Without Cutting

Table I lists the evaluation criteria for detecting each
cutting anomaly. Recall that F; is the measured force in
the direction of cutting, F), is the measured normal force
(positive in compression and negative in tension), and F,
is the estimated force (in the direction of cutting). There
are a number of parameters that must be set to achieve an
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Fig. 5. Illustration of cutting anomalies: (top left) normal cutting condition,
(top right) MLI bunching, (bottom left) cutter sinking into MLI, (bottom
right) MLI tearing

acceptable tradeoff between false positives (indicating failure
during normal cutting) and false negatives (not detecting a
cutting failure). These parameters, and the values used for
this experiment, are given in Table II. In this table, the same
force threshold value was used for detecting cutter motion
obstruction, MLI tearing, and cutter sliding, but in general
these values could be different. The observability threshold
and window size are used by the moving window least
squares estimator that determines whether there is sufficient
variation in the normal force to enable estimation of both
parameters. The window size of 130 samples corresponds
to 1.3 seconds. To avoid false positives due to the static
friction at the start of each cutting motion, we define a
motion threshold to indicate when the cutter is in motion
(note that the operator often stops motion during the task,
so this threshold is applied in any such case). Finally, when
a failure occurs, the estimator is turned off and the previous
valid estimate is used until the cutting condition becomes
normal again.

TABLE I
ESTIMATOR PARAMETER VALUES

Est. Parameters | Value Used Brief Description
Obstruction 1.8 (N) For detection of cutter
threshold : motion obstruction
Tearing For detection of MLI
threshold 1.8 (N) tearing
Slippage 1.8 (N) For detection of cutter sliding
threshold ’ without cutting
Threshold placed on slope
Observability of the line fitted th_rough a section
Threshold 0.30 (N/s) of the most recent 1nput.31gna1 Fn
used to throttle the estimator at
low observability level
Window Nurpber of samples in the_moving
Size 130 window least squares estimator
used for observability identification
Motion Threshold on joint velocities
Threshold 0.001 (m/s) used to identify if cutter is in motion
A 0.99 Forgetting factor for puy,
AF, 0.98 Forgetting factor for Fi

A graphical interface is implemented in ROS/rviz as panel
plugins (see Fig. 6) to enable the user to monitor and
interact with the estimator during the task. In addition to
the video streamed from cameras mounted on the cutter
(bottom left), the interface provides real-time plots that show
(in order from top to bottom) the measured and estimated
force in the direction of cutting, the measured normal force,
the difference between the measured and estimated forces
that is used to indicate cutting anomaly, and the variation
in normal force that indicates the observability of the es-
timator. The dashed lines in the third and fourth plot are
visualizations of the user-specified thresholds that determine
the occurrences of cutting anomalies and the observability
of the parameters, respectively. The value of these dashed
lines can be controlled with the sliders on the upper right
of the interface. This feature enables the operator to tune
the estimator during the task, for example to decrease the
number of false positives or false negatives. The slider panel
also enables tuning of other estimator parameters, such as the
forgetting factors and the window size for the normal force
least square estimator. The panel below the tuning sliders
shows a text representation of the estimator’s evaluation
of the current cutting condition, which can be NORMAL,
BUNCHING, TEARING, or SLIDING.

IV. RESULTS AND DISCUSSION

A total of 22 experimental trials are used to assess the
performance of the estimator. Some trials included the force
controller, which attempted to keep the normal force F), at
3N, whereas other trials did not include force control. Figure
7 illustrates a sample outcome of the estimator. The first
subplot shows the time series of the measured and estimated
resistive force (i.e., force in direction of cutting). The bars
that intermittently reach 10 Newtons are binary indicators
that a cutting anomaly has occurred (which is also shown
in the UI). The pictures at the top are sample screenshots of
the video stream when specific failures occurred (in this case,
two occurrences of tearing). The last three subplots show the
measured normal force, the estimated coefficient of kinetic
friction, and the estimated cutting force. The figure shows
a clear strip-like pattern for these estimated values. This is
the result of estimator throttling under situations including
cutter at rest, cutter not in contact, low observability of the
system, unreasonable estimated values as well as occurrences
of cutting anomalies (as mentioned above). We can observe
from the third and fourth subplots that the estimated param-
eters start out with large variations but gradually stabilize
over time indicating that, under normal cutting conditions,
the coefficient of kinetic friction and the cutting force are
relatively constant.

To further assess the effectiveness of this estimator, the
recorded video from the 22 trials was visually analyzed to
find occurrences of cutting anomalies. Table III compares
the visually identified anomalies to the ones reported by the
estimator. Note that since anomalies usually occur over a
period of time, we consider that the estimator has detected
the anomaly if it is reported within this time or within three
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Fig. 6.
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Fig. 7. Sample Estimator Output

seconds prior to the start of the visually identified failure.
This takes into account the possibility that the failure may
have started before there was a visual cue. It is seen that
the majority of visually identified anomalies are detected.
Adding the false positives for all cases of cutting anomaly
and dividing the result by the sum of all visually identified
anomalies gives us a rate of 10% false positives. Doing the

Estimator User Interface

same for the false negatives results in a rate of 4%. Most
importantly, we noted 17 cases in the video where the cutting
motion was significantly obstructed and required the operator
to perform a recovery action; all of these cases were reported
by the Task Monitor.

TABLE III
ESTIMATOR PERFORMANCE

Visually Identified | False Positives | False Negatives
Bunching 56 5 2
Tearing 21 2 1
Slipping 22 3 1

We have determined that two of the false negatives (one
bunching and one tearing) occurred due to the motion
threshold described in the previous section (which is used to
determine when the cutter is moving). In those two cases, the
actual motion of the cutter was so slow that the Task Monitor
did not compute an estimated force. One solution may be to
include static friction in the model, so that estimated forces
can be computed even in these cases.

In addition, detection of failure relies on a sudden change
in the measured force that results in a significant difference
with the estimated force, due to the lag in the estimator that
is updating the parameter values. There is the possibility that
the bunched MLI accumulates gradually, which gives the
estimator enough time to adapt to this abnormal condition
without reporting an anomaly. This explains the bunching
false negative. Because the tape and MLI is deformable and
relatively ductile, the cutting interface is unpredictable and
relying on a single threshold to detect failure is simple,
but not the most reliable, which causes the majority of the
false positives. However, there is also the possibility that
failure may be happening underneath the surface and not be
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visible in the video; we have considered this to be a false
positive, but further investigation is necessary to obtain a
more thorough assessment.

Of the 22 recorded trials, 9 trials were conducted under
force control. Fortunately (for this work), the force controller
was not perfect and so 4 of those trials had sufficient
normal force variation to enable parameter updates. The
remaining 13 trials were performed without force control
and therefore contained sufficient force variation. The cutting
task completed without major failure in 6 of these trials.
Tables IV and V present the steady state estimates of p and
F. for the 4 force control trials with sufficient force variation
and the 6 completed trials without force control. The values
of these parameters show considerable variation (more than a
factor of two between the minimum and maximum values).
But, we note that it is possible for the estimator to trade
off between changes to these parameters, especially if there
is small variation in the normal force, F,,. We therefore
normalize by comparing the estimated force in the direction
of cutting at F;, = 3 (N), which corresponds to the desired
force in the force control cases. Specifically, we compute
= 3(N) X phsteady+Fe,,..q, and display the results in
Tables IV and V. It can be seen that there is less variation in
the steady-state value of F}, which suggests that the estimator
did, in fact, trade off between p and F.. We are currently
working to reduce this variation, but we note that our goal is
to detect cutting anomalies, rather than to accurately estimate
p and F.. Our results indicate that we can successfully
detect most cutting anomalies even though the estimator
may not always converge to the physically correct values
of the parameters. As a point of comparison, our prior off-
line modeling [3], based on a large amount of collected data
(though with a different type of MLI and tape), estimated p
to be 0.56 and F to be 4N, which are both within the range
of the values presented in Tables IV and V.

tstead’y

TABLE IV
ESTIMATION RESULTS FOR TRIALS WITH FORCE CONTROL

Msteady chteady Ftsteady
0.27 6.0 6.81
0.26 5.2 5.98
0.79 3.8 6.17
0.78 2.4 4.74

TABLE V

ESTIMATION RESULTS FOR TRIALS WITHOUT FORCE CONTROL

Hsteady chteady Ftsteady
0.3 5.4 6.3
0.72 2.0 4.16
0.45 3.5 4.85
0.60 6.1 7.90
0.70 44 6.5
0.62 4.0 5.86

V. CONCLUSIONS

An online method is proposed to estimate the model
parameters used by a task monitor that is designed to detect
tape cutting failures during telerobotic satellite servicing.

The estimator is formulated as a recursive least squares
with vector-like forgetting factors. Efforts have been made
to identify situations when the estimator does not produce
valid results, which includes cutter not in motion, cutter
not in contact, and low observability due to insufficient
variation in normal force. Under these circumstances, the
estimator is throttled and the task monitor uses the previous
valid parameter estimates for failure detection. This throttling
process is important to ensure steady performance of the
estimator. We have shown through a number of experiments
that the estimator is able to detect failures with an acceptable
accuracy and performs consistently across different trials of
the same experiment. For future work, finding an optimal
set of the tunable estimator parameters (and/or a systematic
way of tuning the parameters) is crucial for improving the
estimator’s accuracy. In addition, we currently cannot consis-
tently estimate the parameters when force control is active;
this suggests that we may wish to intentionally introduce
occasional variations in the applied force.
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